CCMS-87-12
VPI-E-87-14

VIRGINIA TECH LAzl &)

o G RANT —CR
i CENTER FOR i
? COMPOSITE MATERIALS .. :-
[
AND STRUCTURES P o7
| -
®
- Nonlinear Analysis for the Response
and Failure of Compression-Loaded
Angle-Ply Laminates with a Hole
® - .
Steven R. Mathison
Carl T. Herakovich
- Marek-Jerzy Pindera
i Mark }J. Shuart
o
@
Virginia Polytéchnic
° Institute
and
State University
Blacksburg, Virginia
¢ 24061
Q
ez ()
(NMASA~-CR-181288) NCNLINEAR AFALYSIS FOR THE N87-28059

FESPCNSE AND FAILURE CF CCBEBESSICN-LQADED

ANGLE-PLY LAMINATES WITH A BCLE In?etlm tncl
Feport No. 65 (Virgiria PBclytechnic Inst. nclas
ard State Univ.) 239 g Avail: NTIS HC G3/39 (C0S4136




College of Engineering
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

July 1987

CCMS-87-12
VPI-E-87-14

Nonlinear Analysis for the Response
and Failure of Compression-Loaded

Angle-Ply Laminates with a Hole

Steven R. Mathison?!
Carl T. Herakovich?
Marek-Jerzy Pindera?
Mark J. Shuart4

Department of Engineering Science & Mechanics

Interim Report 65
The NASA-Virginia Tech Composites Program
NASA Grant NAG-1-343 .

Prepared for:

Structural Mechanics Branch

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23665

1 Graduate Student, Department of Engineering Science & Mechanics
2 Professor, Department of Engineering Science & Mechanics
3 Assistant Professor, Department of Engineering Science & Mechanics

4 NASA Langley Research Center, Structural Mechanics Branch




NONLINEAR ANALYSIS FOR THE RESPONSE
AND FAILURE OF COMPRESSION-LOADED
ANGLE-PLY LAMINATES WITH A HOLE
by
Steven Richard Mathison

Committee Chairman: Carl T. Herakovich
Engineering Science and Mechanics

(ABSTRACT)

The objective of this study was to determine the effect of nonlinear material behavior on the
response and failure of unnotched and notched angle-ply laminates under uniaxial
compressive loading. The endochronic theory was chosen as the constitutive theory to model

the AS4/3502 graphite-epoxy material system.

Three-dimensional finite element analysis incorporating the endochronic theory was used to
determine the stresses and strains in the laminates. An incremental/iterative initial strain
algorithm was used in the finite element program. To increase computational efficiency, a
180° rotational symmetry relationship was utilized and the finite element program was

vectorized to run on a super computer.

Laminate response was compared to experiment revealing excellent agreement for both the
unnotched and notched angle-ply laminates. Predicted stresses in the region of the hole were

examined and are presented, comparing linear elastic analysis to the inelastic endochronic

theory analysis.

A failure analysis of the unnotched and notched laminates was performed using the quadratic
tensor polynomial. Predicted fracture loads compared well with experiment for the unnotched

laminates, but were very conservative in comparison with experiments for the notched lami-

nates.
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1.0 Introduction and Literature Review

1.1 Introduction

Composite materials present increased flexibility to structural designers because laminates
from these materials can be tailored to achieve desired stiffness, strength, and dimensional
stability properties. A common class of laminates is the angle-ply laminate which consists
of £ ¢ plies. These laminates often exhibit nonlinear material response under in-plane
loading. The laminate with a hole is also common in many design applications. When loaded,
such notched laminates have an inplane stress concentration at the hole boundary as well as
significant interlaminar stresses at all free edges. Few researchers have studied the complex

three-dimensional stress distribution in compression-loaded angle-ply laminates with a hole.

The angle-ply laminate is commonly used in advanced aircraft and aerospace designs be-
cause its stiffness can be varied over a wide range, dependent on the layup angle ¢. Of
course, in such design applications, cutouts are often a necessity. Therefore, it is important
to know how cutouts affect the stiffness and strength of these laminates. Because composite

material strength is lower under compression than in tension, most advanced designs are
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compression loading critical. With these considerations, it is easy to see the importance of

studying the response of notched angle-ply laminates under uniaxial compression loading.

The objective of the present study is to predict and investigate the three-dimensional stress
distribution in compression loaded angle-ply laminates with a central hole. A three-
dimensional endochronic constitutive theory for transversely isotropic composite materials is
used to model the nonlinear material response. The endochronic theory and
incremental/iterative constant stress and constant strain algorithms are incorporated in a fi-
nite element program to determine laminate stresses. Inversion symmetry is utilized to sig-
nificantly reduce the computer storage requirements and execution time. Failure initiation
and failure modes are predicted using the tensor polynomial and maximum stress failure cri-

teria. The analytical results from this study are compared with existing experimental results.

1.2 Literature Review

This study involves a broad range of subject areas, among them the endochronic constitutive
theory, three-dimensional finite element analysis incorporating the endochronic theory, ma-
terial nonlinear laminate response, and notched laminate strength prediction. A thorough
review of the above areas would be exhausting; therefore, only the most significant subject
areas are covered. The following review encompasses material nonlinearity in composites,
the endochronic constitutive theory, and finite element analysis with material nonlinearity.
For a review on the stress analysis and strength predictions of laminated plates with holes,

see Burns, Herakovich, and Williams *.
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1.2.1 Material Nonlinearity in Composites

The literature is rich with papers describing nonlinear constitutive models for isotropic mate-
rials. However, for composite materials, the constitutive theory must include anisotropic re-
sponse. With this additional requirement of anisotropy, the choices of models are more
limited. Because composites can be analyzed both on a microscopic scale (as a heteroge-
neous medium) and on a macroscopic scale (as a homogeneous anisotropic medium), com-

posite material constitutive theories are divided into micro-theories and macro-theories.

1.2.1.1 Microscopic Theories

Microscopic constitutive theories use the elastic and inelastic mechanical properties of the
fiber and matrix to formulate the anisotropic constitutive relations on a macroscopic level.
Dvorak et al 2 and Aboudi ? have made significant contributions to the development of micro-
scopic constitutive theories. Many others have contributed as well. Aboudi ® and Pindera and
Herakovich " both give thorough reviews of the literature on microscopic constitutive theories

for composites.

1.2.1.2 Macroscopic Theories

In contrast to the microscopic approach, macroscopic constitutive theories treat the lamina
as a homogeneous anisotropic medium and do not consider the individual constituent prop-
erties. Many researchers have contributed to the development of macroscopic constitutive
theories for composites. Only a limited number are included in this review. For a thorough

review of the literature on macroscopic composite material constitutive theories, see Pindera

and Herakovich 1,
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One of the earlier works in the area of nonlinear constitutive theories for fibrous composites
was that of Hahn and Tsai 4. They used complementary elastic energy density to develop a
material nonlinear stress-strain relationship for a two-dimensional lamina. The stress-strain
relationship'is linear in uniaxial loading in the longitudinal and transverse directions, but
nonlinear in shear. They compared their theory with off-axis coupon tests and obtained sat-

isfactory results for boron/epoxy Narmco 5505 and graphite/epoxy 4612 Morganite 1.

Sandhu ® developed an incremental constitutive theory using the tangential properties of the
lamina. The strain-dependent tangential properties were used to express the strain increment
in terms of the stress increments. Off-axis unidirectional and muiti-directional laminate tests

were performed to compare the theory to experiment.

Hashin, Rosen, and Bagchi ® proposed a theory which modeled the nonlinear behavior of a
lamina in shear and transverse directions. The longitudinal (fiber direction) stress is modeled
as linear elastic and does not affect the shear and transverse strains. The theory includes

interaction between the transverse and shear stresses in the nonlinear range.

An interesting approach was taken by Dvorak et al 7 to develop a continuum theory for the
elastic-plastic response of fibrous composites. They used a microscopic scale finite element
analysis on materials such as boron-aluminum to develop the theory. The theory agreed well

with numerical analysis for a variety of loading programs.

1.2.2 Endochronic Theory

The endochronic theory has most often been applied to isotropic materials. Although the
endochronic equations were not originally derived to model anisotropic response, the theory

is of a general nature, allowing it to model many material types. Recently, the theory has

been extended to anisotropic materials.
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1.2.2.1 Isotropic Materials

Although there is some disagreement as to when and with whom the theoretical foundations
for the endochronic theory were developed, Valanis ' % is credited with one of the earliest
published works of the endochronic theory. He used the concepts of irreversible
thermodynamics along with experimentally observed material behavior to develop a math-
ematical theory o efncompasses aii
those theories in which "the state of stress at the present time is a function of the history of
strain with respect to a time scale, which is not the absolute time scale measured by a clock,

but a time scale which in itself is a property of the material at hand” ".

In a series of papers, Valanis '® - *® and Valanis and Lee ' extended the endochronic theory
to model increasingly complex phenomena. They compared various theoretical studies with
experimental results and found good agreement in most instances. Through these papers,

they brought to light the numerous applications which could be accurately modeled with the

endochronic theory.

1.2.2.2 Anisotropic Materials

Only two previous distinct research efforts have directed attention towards the development
and application of the endochronic theory to fibrous composites. They are the works of
Pindera and Herakovich ** 2 and Zinov'ev and Sarbaev 2. Pindera and Herakovich ' 2 ex-
tended Valanis’ endochronic theory to anisotropic materials and then used this theory to
model the nonlinear response of unidirectional Celion 6000 graphite-polyimide. They derived
a set of two-dimensional constitutive equations and used them to model various planar foad-
ing cases, including cyclic loading. Their results compared quite well with experimental re-

sults.
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Zinov'ev and Sarbaev 2 recently used the endochronic theory to model composite laminate
behavior. They used classical lamination theory in combination with endochronic equations
to develop a material nonlinear laminate analysis code. They found good correlation with

experiment for a variety of laminates subjected to in-plane loading.

1.2.3 Finite Element Analysis with Material Nonlinearity

Prior to the finite element method, stress analysis in the presence of inelastic material be-
havior was a very intractable problem. Many approximate methods were developed to give
engineers useful answers; however, the accuracy of these approximate methods left much to
be desired. The advent of the finite element method and the digital computer provided engi-
neers with the capability to obtain accurate solutions to complicated, nonlinear material

problems.

Inelastic numerical analysis has its roots in the simultaneous development of both the initial
strain method 2 and the direct stiffness method 2. In the initial strain method, the elastic
equations of equilibrium are modified to include the inelastic strains which cause no change
in stress. The marriage of the initial strain method to the finite element method was initiated
by Gallagher and his Co-workers 25 2. They used the initial strains to calculate an initial force
vector (sometimes referred to as a psuedo force vector) which was added to the finite element

force vector.

In the direct stiffness method, sometimes called the tangent modulus method, the nonlinear
problem is divided into a series of piecewise linear problems by stepping through the solution
and modifying the stiffness at each step. The finite element tangent modulus equations were

developed by Pope #, Swedlow and Yang %, and Marcai and King 2.
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Most present day inelastic solution techniques are based on one of these two methods.
However, the efficiency, accuracy, and complexity of the present day techniques have all in-
creased substantially. Inelastic analysis, geometric nonlinear analysis, and the combination

of the two are now routinely performed using these present day techniques.

1.2.3.1 Endochronic Theory Applications

The first application of the endochronic theory of plasticity in a finite element analysis was that
of Valanis and Fan ®. They used the initial strain method formulation in parallel with an
incremental/iterative solution technique to calculate the stress and elastoplastic strain fields
in a copper plate containing two symmetrically disposed edge notches. The plate was loaded
cyclically in its own plane along its outer edges. Theoretical results were presented, but ex-

perimental comparison was not provided.

Watanabe and Atluri % used a different form of the endochronic theory, completely analogous
to classical plasticity theory, in a finite element analysis to compare and contrast the results
of Valanis and Fan ®. The structure of the new endochronic equations allowed the use of the
tangent stifiness method as opposed to the initial strain method used by Valanis and Fan.

Again, theoretical results were not compared with experiment.

1.2.3.2 Composite Material Applications

Applications of the finite element method to the analysis of composite material structures ex-
hibiting inelastic behavior have been quite sparce. Adams and Miller %, Adams %, and Foye
% used the finite element method to analyze unidirectional fiber-reinforced composites mod-
elled on the microscale. Their models envisioned arrays of elastic fibers embedded in an

elastic-plastic matrix material. Such microscopic analyses can provide an understanding of
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the inelastic behavior of unidirectional laminae; however, it cannot be extended efficiently to

multidirectional laminates.

Renieri and Herakovich 35 and Nagarkar and Herakovich % used a Ramberg-Osgood
constitutive model in a quasi-three dimensional finite element analysis of interlaminar
stresses in finite width laminates. Cross-ply, angle-ply, and two quasi-isotropic
graphite/epoxy laminates were studied. Griffin, Kamat, and Herakovich ¥ used a Hili-type
yield criterion and an incremental plasticity approach in a fully three-dimensional finite ele-
ment analysis of notched composite laminates. Material nonlinear isotropic hardening was
modelled using the Ramberg-Osgood model and the constitutive equations were assumed
temperature dependent. The incremental solution was performed with nonlinearities intro-

duced as psuedo loads computed from initial strains.

Using a previously developed elastic-plastic constitutive theory for composites 3 - 4, Bahei-
El-Din, Dvorak, and Utka 4 performed a finite element analysis of Boron/Aluminum plates of
various layups with and without cutouts. Their analysis shows good agreement with exper-
iment for uniaxial loading. Several other researchers also have recently applied various

constitutive theories to inelastic finite element analysis of fibrous composites 4 - 4,
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2.0 The Endochronic Theory

2.1 Introduction

As noted in the literature review, macro-level nonlinear constitutive theories modeling the
response of fibrous composite materials are limited in number and validity. The few theories
available were considered, and due to its firm thermodynamic foundation and demonstrated
correlation with experimental results, the endochronic theory ?® was chosen for this study.
Pindera and Herakovich 2 have shown their anisotropic endochronic theory to model lamina
response very well for in-plane loading. This study extends the anisotropic equations to three

dimensions in order to analyze laminates with three-dimensional stress states.

Valanis " 2 originally developed the endochronic theory to explain certain responses exhib-
ited by ductile metals in the nonlinear range. Effects such as cross-hardening in tension due
to torsion as well as the formation of hysteresis loops in loading/unloading cycles, not easily
or accurately explained by classical plasticity theories, were accurately predicted by Valanis

for certain metals. The theory, based on irreversible thermodynamics, was developed using
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the concept of internal variables. As previously mentioned, the theory is centered around a

deformation scale which is assumed to be a material property.

The deformation scale (also referred to as the time scale) can be either time dependent or
time independent. In this study, the deformation scale is assumed to be time independent.
Also, the deformation scale may be a function of stress or strain. This study uses a stress
based scale (ala Pindera and Herakovich) to make the determination of endochronic constants
more direct. This will become more evident later in this chapter. A primary feature of Pindera
and Herakovich’s development is the use of a multiple set of internal variables, which reduce
the strain functions to power law approximations. Whereas metals are linear up to a yield
point, facilitating a single internal variable approximation, epoxy resin composites generally
show a gradual softening, with no well defined yield point. Multi-internal variables provide

such behavior.

Whereas Pindera and Herakovich used a single time scale z which is a function of all the
stress components, Zinov'ev and Sarbaev?' used muitiple, separate time scales z, (i=1,2,3)
which were functions of o4, 0,, and 1,,, respectively. Valanis®* similarly used the hypothesis
of the existence of two types of intrinsic time for isotropic materials: the “hydrostatic” and the
“deviator” types. This made it possible for Valanis to distinguish two deformation mechanisms
in the inelastic range: the volumetric and the shear mechanisms, each characterized by its
own intrinsic time scale. The use of multiple time scales allows for a more detailed material
model and can, theoretically, yield more accurate analysis, at the cost of added complexity.
The single time scale used by Pindera and Herakovich yielded good correlation with exper-
iment for laminae, thus the added complexity of multiple time scales was felt to be unneces-

sary for the present study.
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2.2 Development of 3-D Endochronic Equations

The endochronic equations are based on two fundamental laws of thermodynamics governing
an irreversible process: 1) Conservation of Energy, and 2) The Dissipation (Clausius-Duhem)
Inequality. From this base, Pindera and Herakovich 1 rigorously developed the equations for

strain in terms of stress, a deformation scale z, and material constants.

In the equations that follow, all stresses and strains are expressed in reduced notation as is

standard in the composites literature,

€4 €44 Oy O
€ €22 ) 022
€3 €33 O3 O33
= and = (2.1)
€4 Y23 O4 123
&5 Y13 Os T13
&g Y12 Og T12

where the 1-2-3 coordinate system corresponds to the material principal coordinates with the

1-direction corresponding to the fiber direction (Figure 1).

The reader is referred to Pindera and Herakovich’s work 1 2 for a detailed thermodynamic
derivation of the equations that follow. In the following equation set (2.2), the equations for
normal strain (g, i=1,2,3) are obtained from a small modification of those developed in
equation set (2.30) of Pindera and Herakovich’s work . The equations for shear strain (g,

i=4,5,6) are identical to those shown in equation set (2.16) of Pindera and Herakovich.

Pindera and Herakovich appropriately modelled the fiber direction response as a stiffening

response because o, was always positive in their experiments. Because the laminates ana-
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Figure 1. Nomenclature for Compression Loaded Laminate
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lyzed in this study are loaded in compression, the normal stress (oy) in the fiber direction is
generally compressive. Therefore, rather than a stiffening response in the fiber direction, this
study uses the softening response which is exhibited by compression o, - &, experiments. This
softening behavior is assumed to be uncoupled from the other stress components and is ac-
counted for in the expression for g, by a new function f(o1). The form of this function is defined
later in this chapter. Notice also that the expressions for the nonlinear portions of €, and ¢,
(the integral quantities) in (2.2) are independent of 0,. Equation set {(2.2) is the complete set

of three-dimensional equations needed for this study.

As shown by Pindera and Herakovich, the anisotropic endochronic equations can be ex-
pressed in the following form, where the term ?(01) has been added to account for the softening

as explained previously. For a single internal variable q; (see Pindera and Herakovich " for

details on the internal variables q,),

- 95

+7
€4 60'1 f(0'1)

_aGO a ’ ’ ’ s ’ r ’
©2 = 5. + [3Baalz = 2)05(2)dz’ + {oB2s(z — 2)o5(2")0z
£ = 00 4 foBaalz =~ 2)03(2)dzZ’ + [7Bya(z — 2)0,(2)dZ’

dog 0 Jo

_ ~0Gy , .z na—hlz=2) (s
€4 = %, +J'0E~o4(z Yo 4 dz (2.2)
€5 = AC I §ZF°05(2')e°7‘°(z_z')dz'
60'5 0

—aGo ¥4 , —%(Z-Z') ,
€6 —T‘e-+joF og(z)e dz

where
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— _ o 2 _ o
Bylz — 2) = E-e M z)+—%—-e Mz =2)

- _ ) 2 _ o
Byalz — 2) = ~E-e Ag(z z)_,__DB_.e Az —2')

_ (B — Bay)”

E
2(bgy — by3)

2
F=E§§_
bes

D= ‘;"{[2312"11 = 2B44bqy] — [Byq(byg + byg) — 2Bypbyplaq} - [Bygay + ‘%‘(322 + Byl

_ 1
(1 = ayep)lbgq(byy + byg) — 2b2]

2, = S22 Ca3
4
boa — bos
C
Ap = Ag = -
bse
Z' = Integration Variabie
A4, A, = Eigenvalues of equation (2.23) in'°
a4, 0 = Normalized eigenvalues, equation (2.26) in 19

In the above, dz = , /S;do,dc; where the terms of the fourth order, positive-definite tensor S,
are material parameters. Likewise, b;, By, and C; are all positive-definite fourth order tensors
whose terms are material parameters. The A, terms are referred to as hardening exponents
which reflect different dissipation modes. G, is a potential function defined as a stable equi-

librium state, in directly measurable quantities (i.e. no internai variables). Extending
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equations (2.2) to multiple internal variables requires a new definition for the §i,(z) terms in

(2.2) and a new form of the expressions for g,, €, and €.

The new expressions for g,, €, and g¢ with multiple internal variables q? (@ = 1to M) ¥ are:

_aGO s ’ 2 ’
€4 = 3o, + Jo Buslz — 2')04(2")dz
—0Gy . 2= N fon g
€5 = 3o, + joBss(Z — Z')os(2')dz (2.3)
- ~0Gy 7= Nex (on
€ = 3o, + J'OBGB(Z — 2')0g(2")dz
where ali _B_i‘.(z) in (2.2) and (2.3) are now given as:
_ M-(Ba+8a)2 . (8% _Ba)2 e ]
Bp,(2) = % 3 | Lot B i, Ba "By -age
a=1] (b2 — byy) (b2 — byg) J
_ ) \ -
= _ 1 M| (B3 +Bx)® i (B —Bjy -23(2)
Bol2) = 5 X |—%—o ¢ L —pey ©
a=1{ (byy = byy) (b2 — baj) ]
o a2
- 1 ¥ (B —B)" iy
Bul(2) = - " ra
2 a=1 (b22 - b23)
1 ¥ Bes -3
Beslz) = — X e
%8 2 o=1 bgs
g ng + Cg3
b + bag
Cy — C
A=y = S22~ G
bz — bas
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and

M = number of internal variables

The expressions for €, and £, show the response in the direction transverse to the fibers to

be governed by two independent sets of hardening exponents, A§ and A§. Because A = A4,

coupling exists between transverse normal and shear response in the plane of isotropy. As-

suming the hardening response is similar in shear and transverse tension in the plane of

isotropy yields by, = B, = Cg = 0. This simplifies the expressions for the Eii parameters.

o o o ng
;\2 = }\,3 = }\,4 = o
bzy
M (B3)® -aa)
Byf2) = T ——e
=1 by
Bysz) = 0

Bu() = 2By(2)
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gy = —_-%f—o + j'ggzz(z — 2')0,(2)dz’
€3 = ;af%' + [3B2a(z — 2)04(2)dz’
€4 = _—az%’- + %J';ﬁzz(z - 2')0,4(z')dz’
€5 = _aZ(:" + J'g§66(z - 2')05(2)dz’
£g = _aiio + 5‘3566(2 — 2')og(z)dz’

(2.5)

To obtain a power-law approximation for equations (2.5) , it is necessary to integrate the

equations by parts. This is done for the expression g4 below:

M (B%?2 _.o_.
+J-z§(?!6)e re(z—2')

_ ~0Gy 2
86 = 606 + jOUdV

where

The Endochronic Theory

Og(z')dz’

(2.6)

17



2
V= M 4 (Bge) e—)\:(z—z’)

a=11g bgg
Recalling that,
foudv = uv| fovau
we have
s = ~ G, + %‘: 1a (Bé;s) oMz (z)| zg 1 ( %6)26_12(2_2,)(%6_(’2')(’
005  o=11g bgg %=11¢ bgs 0z
= _af,(:° + éé—i%[om ~ oe(0)e ] -
j- M _1 Pes) (566) —lg(z—z’)ﬁﬂdz,
%4=12¢ b oz’
However,
aé——“)ja (b:; [os(2) —06(0)] = quM”js (iii aG;Z(,Z)
therefore,

G M
60-6 a=1 }\-6 66

M a ’ ’
3-0 1 (B ss) 2 B, _e—xg(z—z))aos('z)dz,

Equation (2.7) corresponds to equation (5.17) in Pindera and Herakovich *.
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Similar expressions hold for the remaining principle strains. Assuming a large number of
internal variables (M) represent the material response, a power law approximation may be

introduced as follows:

M B%.)? -
) ——L( sf) (1-e™™% = BX-2™  for ng> 1 2.8
a=17»6 bss

where

326 is an arbitrary constant whose subscripts relate it to Bgg

ng is a constant whose subscript relates it to Bgg

The deformation scale z requires that 6,0) = 040) = 6,(0) = 04(0) = 0,(0) = 0. Using the
power law type expression (2.8) for all the strain components gives the following form of the

endochronic equations:

€ = —affo + f(oy)
€ = —af:jo + jg B+ (z — z')"z%;f—dz’
£g = -60(:" + Igsgzqz -~ z’)"’%dz’
£ = _—ai?’- + %jgsgz-(z - z')"z—Z—Zf—dz’ (2.9)
€5 = ;agfi + J';Bgs “(z — z’)"‘%dz'
€g = -ac(:o + j; B (z — z’)"‘%dz’
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where

Bgz is an arbitrary constant whose subscripts relate it to By,

n,is a constant > 1 whose subscript relates it to By,

2.3 Incremental Form of Endochronic Equations

The equations developed in the preceding section are not suitable for use in a finite element
program. This is because the strains are functions of complex integrals involving the defor-
mation scale z . Calculation of the parameter z requires knowledge of the load history. For
simple cases, such as tensile or compressive loading of a lamina, the stresses are propor-
tional to one another and these proportions do not change with increasing load. This allows
z to be expressed as a proportionality constant times the desired component of stress. As

an example, consider uniaxial tensile loading of a lamina transverse to the fibers.

dz = \/S;00,d0, = /S5 do, (2.10)
z= \/ Sy» o

Similar expressions may be developed for other lamina orientations under a uniaxial load. In
fact, the endochronic constants are calculated using these uniaxial load cases. This is shown

later in section 2.4.

In a laminate, the stresses need not be proportional to one another. Since the load history
of the stress components is not known a priori, equations ( 2.8 ) may not be integrated exactly.
However, equations (2.8) may be integrated incrementally by assuming the stress compo-

nents to be proportional to one another over each load increment. This allows the stress
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component load histories to be nonproportional in a piecewise sense. Consider the ex-

pression for g:

_ ~9Gy 2.0 nng 996,
€g = 3o, +j0856 (z-2) 6_z’dz

Written incrementally, this becomes

N_ ~0G . (z,,0 ) ) 1 (220 , ,
€p = 5or + (,"Bes(zy — 2')S6,dz’ + f0'Bes(zn — 2)"S6,dz" +
.......... + [o"'Bls(zn — 2)*S6ydz’
or
N_ —09Go + Bgs S6 [ ng +1 _ _ ns+1] +
86 - 606 (ne +1 { 1 Z (ZN 21) }
0
6 —z) Y~z — )" 1] + ... + Sz — Mg +1
e +1) {S 2L(zn — 21) (z "] NZN — ZN-4) }
N %, Be fo [y — 2™ " = (zy — 29" ¥ 1] (2.11)
£g = - - - .
6 60'6 ("s +1)k 1 K N k-1 N k
where

606 ~ AO'G

S6, = ——— _ k=12,...N
K7 78z Iy T Az,
N
Zy = Y Az,
k=1
\/S,JAO, AcrJ
N = number of increments
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The integration accuracy is a function of the increment size. The smaller the increment, the
more accurate the integration. In the limit, as Az goes to zero, the integration becomes exact.

For mildly non-proportional load histories, the error introduced by this process should not be

great.

2.4 Determination of Endochronic Parameters

Determination of the endochronic constants requires analyzing many test results. Burns et
al ' performed all the laminate tests as well as the 10° and 45° off-axis tests and the uniaxial
[0] and [90] compression tests. All losipescu tests as well as the 15° and 30° off-axis tests
were performed by Jack Beuth® at VPI. Data from at least two and in some cases three tests
were used in determining the constants for this study. The final value of a particular
endochronic constant is the average of the values determined from all tests. Any exceptions
to this procedure are noted. Appendix A shows the least squares method of representing a

"best fit” line through the experimental data.

The endochronic equations may be written in terms of reversible strain (ef) and irreversible
strain (elf). The reversible strains are represented by derivatives of the potential function G,

in equations (2.9), whereas the irreversible strains are represented by the integral quantities.

g =g +g" (2.12)

where

and
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er = f(oy)

IR , dc ,
£y = I;Bgz (z2-z )"?a—;dz

do
63 = [oB (2 ~ z')"Z-—az? dz’
R _ 1 (250 nnp 904 .,
€4 = 7]‘0822 (z—2) 2—62' dz

0o,
£ne = jgage “(z = z)e =5

dz’
o0z’

IR _ (2 nne 9%
66 = [oBos"(z — 2 )“'a—z‘fdz

2.41 Reversible Response

The potential function G, has not been discussed in any detail to this point because its form
is strongly material dependent and stress sign dependent. As noted earlier, Pindera and
Herakovich used a function G, which modeled stiffening behavior in the fiber direction of
C6000/PMR15 graphite-epoxy under uniaxial tension. AS4/3502 exhibits similar tensile be-
havior. However, because the laminates in this study are loaded in compression, the fibers
are in compression except, possibly, in regions near the hole. A typical uniaxial compression
test of AS4/3502 ' exhibits softening as shown in Figure 2. This softening behavior is modeled
in this study as an uncoupled event. Therefore, it is not represented by a function of z nor is
it included in the potential function Go, ala Pindera and Herakovich. Instead, it is expressed

as a separate function f(c,) which is determined in the following section.
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The function G, needs to model only reversible linear response and is defined as

Therefore,
—0G
er = ® =Ap; i=123458 (2.14)
00;

A thermodynamic constraint on G, requires the fourth order tensor A; to be positive

definite .

lim 8% —=6o = ASoi0; 2 0 (2.15)

ci—»oo

The fourth order tensor A, is the compliance matrix. It represents the initial compliance of the

material and is determined from appropriate tests.

2.4.2 Response Along the Fiber Direction

The function f(o1) originally introduced in equation (2.2) is determined from a uniaxial
compressive test (Figure 2) with the fibers aligned along the specimen’s axis. A simple power

law fits the experimental data very weli; therefore, the functional form of f(c,) was chosen to

be:

floy) = % ByylogI™  where ny > 1 (2.16)

The absolute value sign is used because o, is usually negative. The function f(c,) is negative

if o, is negative and positive if g, is positive.
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Figure 2. o, Versus &, for a Typical 0° Uniaxial Compression Test for AS4/3502
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Substituting equations (2.13) and (2.16) into equation set (2.8), the complete form of the

endochronic equations can be written as

€4 = A1]Gj + B11‘0’1|n1

0(Z) 40
€9 = A2lol + j;Bgz '(Z - ) z—*éz—;"‘—'d

#ny 99 (2’)
€3 = A3joj + 53822 * (Z )nz 3

9042 4 (2.17)
o0z’

6 = Ayoj + o83 (2 — )™

Ng 605(2,) dzl

- 200 i _
€5 = Ast'j + joBss (Z Z) 32’

- 250 nne 9%6(2)
€g = AGJG] + IOBGG' (z—2z )nsTdZ

2.4.3 The Compliance Matrix

The reversible strain of the material is expressed in terms of stress and the compliance matrix

A; as

=] | 117

€1 Aip Ap A3 O 0 O o4

& Atg Ap Ay 0 0 O 02

e A1z Az A3 0 0 O O3

eR “lo o0 o Ay O O o (#18
ex 0 0 0 0 Ag O o5

Lsg_ LO 0 0 0 0 Ase--os-
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Under the assumption of transverse isotropy in the 2-3 plane, Ayn = A, Ay = A, and

Ay = Ag . This simplifies the above expression to

) Ar Az Az O 0 0 o4
& Az Ap Ay 0 0 O O3
63 Az Az Ap 0 0 O O3
R | = (2.19)
€4 0 0 0 A44 0 0 O4
e 0 0 0 0 Ag O os
£ 0 0 0 0 0 Ag Og

Equation (2.19) contains only five independent constants (A,,, A,,, Ay, A, and A). The addi-

tional A, constant is a function of A,, and A, (i.e. 2(A,, — Ay) = Ay, ).

2.4.31 The A, Constant

The constant A,, is determined by considering the compressive loading case of o, # 0 and

all o, = 0, (i = 2,3,4,5,6). The reversible strain in the fiber direction is then

£y = Aqq0y (2.20)
and
655 A
60'1 1"
However, from (2.17)
a6l _ Oy
601 601 4 =0
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Therefore,

681
Ay = ==

= 2.21
oo —o (221)

The data from two compression tests on unidirectional [0] AS4/3502 were essentially linear in
the range of o, = 0 to 0,25 ksi. A least squares fit through these points gave a straight line

with a slope m (or E,). A, is the inverse of m (or E,).

Averaging the values for A,, from both tests (Table B.1(a)) yields:

Aqq = 5.12687 x 10°% (psi™") (2.22)

2.4.3.2 The A12 Constant

Like A,,, the endochronic constant A, is also calculated from a [ 0 ] uniaxial compression test.

Consider the expression for e} as shown below:

ey = Ao, for 6, #0 0, =0 (i = 23,456) (2.23)
Now
dey A, 91
O€4 12°3¢
and
682R _ 601
681 oy =0 12 551 oy =0
From (2.21)
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and by definition

_ 68? -y
681 01 =0 12
Therefore,
A12 = - A11V12 (224)

In order to caiculate A,,, v,, must first be determined. This is done by fitting a least squares
line through a plot of €, versus €, (Figure 3). The least squares fit is used in the range of data

points from g, = 0 to g, = 0.13%. The value of v,, is the slope of this line.

Averaging the values of v,, from both tests (Table B.1(b)) yields

viz = 0.333 (2.25)

Combining (2.22), (2.24), and (2.25) gives

Ay = —170722 x 10°% (psi”") (2.26)

2.4.3.3 The A22 Constant

A 90° uniaxial compressive test is used to determine A,, . In this test, the fibers are oriented

transverse to the loading axis. Because all o, (i = 1,3,4,5,6) are zero, the expression for €} is:

E‘; = A2202 (227)
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Figure 3. ¢, Versus €, for 0° Uniaxial Tests of AS4/3502
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and

aﬁg _ _ 682

= Ay = —=

60'2 60'2 o, =0

Utilizing the plots of g, versus &, shown in Figure 4, a least squares fit is used in the range
of data points between ¢, = 0 and 6, = 8 ksi. The endochronic constant A, is the inverse of

the siope of this line {(modulus E,).

Averaging the value of A,, from both test runs (Table B.1(c)) yields

Ay, = 655133 x 1077 (psi™") (2.28)

2.4.3.4 The A44 Constant

The endochronic constant A, is determined from an losipescu shear test in the 2-3 plane. This
type of test induces an approximately pure 2-3 shear stress O, (1) in the central region of the
specimen® . Figure § shows the test specimen and idealized loading conditions used for this
test. (The symbol 8 in this figure is only valid for 1-2 plane tests. For 2-3 plane tests, the fibers
run in the direction of page depth). Figure 6 shows plots of o, (1,;) versus g, (y,,) for two tests.
The endochronic constant is determined by fitting a least squares line through the initial por-
tion of the curve for the range of data points between 0, =0 and o, = 6 ksi. The constant

A4 is the inverse of the slope of this line (modulus G,s)-

Averaging the values of A, from tests 1 and 2 (Table B.1(d)) yields

Ay = 218049 x 107% (psi™") (2.29)
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R ,B = Distributed Forces
B = Fiber Orientation Angle

Figure 5. Test Specimen and Loading Conditions Used for losipescu Tests
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Figure 6. O, Versus g, for losipescu Tests In the 2-3 Plane of AS4/3502
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2.4.3.5 The A,, Constant

Because a transversely isotropic material contains only five independent constants, A,, may
be determined indirectly. Consider the following expression for the shear modulus ch

(i, j = 1,2,33) in a plane of isotropic symmetry.

Gy = — (2.30)
C 2y + 1)
E;
Gy = ETETY
(V23 + 1)

1 - 2(V23+ 1) =2 V23 +L)
Gy3 E, E, E

However, by definition,

1
A =
G
1
A22 - 0
Ex
Va3
Az
3 E2

Therefore, as shown earlier,
Ay = 2(Ay — Ay)

A
Ay = Ay — 5

From the previously determined values of A,, and A . Ay is calculated to be
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Ay = —4.35111 x 1077 (psi”") (2.31)

2.4.3.6 The Ass Constant

The endochronic constant Ay is determined in an analogous manner to A,,. An losipescu
shear test in the 1-2 plane yields a region of approximately pure o, (1,,), from which o, versus
£¢ (Y1) may be plotted. Figure 7 shows such a plot for two tests. A least squares fit line
through the initial portion of each curve yields a slope m (modulus G;;), the inverse of which

is Ags. The equation for €} under the condition 4 # 0, 6, = 0 (i = 1,2,3,4,5) is shown below.

£n = Agglg (2.32)
and thus
682 _ _ aﬂs
30'6 66 606 og =0

Because the test data was available, off-axis tests of 10°, 15°, 30°, and 45° were also utilized

to determine Ag . Figure 8 shows o versus g, for the four off-axis tests.

Averaging the values of Ay from the above six tests (Table B.2(a)) yields

Ags = 1.18373 x 107° (psi™") (2.33)

2.4.4 Irreversible Endochronic Constants

The irreversible endochronic constants are determined by plotting In e[ versus In o, for vari-

ous lamina tests. These plots should be a straight line because when only one stress com-
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ponent (o)) is present, the irreversible portion of strain (e/f) is represented by a power law

(2.12). Symbolically, we can represent the power law form of e!f as follows:

gt = Coli (i =1,234.,5, or6, no sum on i)

where

Ci = functions of the irreversible endochronic constants
ki = nyg
k, = n, +1
ks = n, +1
ky = np+ 1
ks = ng+ 1
ke = ng+ 1

Taking the logarithm of both sides of the above equation gives:

Ing]} = KklIno, + InC,

In the classical x-y coordinate system, the above can be represented as:

y=mx + b
where

y = lnsi'R

X = Ing;

The Endochronic Theory
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b = InC

In this coordinate system, m is the slope of the line and b is the y-intercept. The above rep-

resentation is used in evaluating all of the irreversible endochronic constants.

2.4.4.1 The nand B Parameters

The same tests used to determine the A; parameters are utilized in calculating the
endochronic constants appearing in the irreversible strain expressions. These constants in-

clude n,, By, n,, BY, ng and BY (2.17).
n, and B,,

The constants n; and B,, are calculated from the 0° uniaxial compression tests. The ex-

pression for elf is written as follows:

IR _ n
g1 = By40q4

Using equation (2.34),

For a power law fit, this plot should yield a straight line with slope k, and y-intercept In C,.
Figure 9 shows the experimental curves to be best represented by a straight line in the range

of data points from Inc, = 11 tolno, = 11.7.
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Averaging the results from tests 1 and 2 (Table B.2(b)) yields

n, = 2.44791 (2.36)

Byy = 1.90645 x 107 '° (2.37)

n2 and Bozz

The constants n, and BY, are determined from the 90 ° uniaxial compression tests. The ex-

pression for eiR (2.17) is

elR = I;Bgz “z - z')"Z———a(’;z(,z) dz’ (2.38)

where

dz = \/Sijdoldcj

Under pure uniaxial loading, o, # 0 and 6, = 0 (i = 1,3,4,5,6). The expression for dz simplifies

to
dz = |/82,d0,d0; = /Sy, do,
Therefore,
z= /S50, (2.39)
Gop _ 1
0z \/g
and
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IR _ ¢Z20 nn 1 ’
€9 -joBZQ‘(Z_Z)z—_—_—dZ
22

Integrating,

IR _ B [ -@-2"*"]:
82 .s;[ n2+1 IO

_ Bgzznz +1
\/q(nz + 1)

Nz
0 -z
JR = B2a(Sap) 2 n, 44
= 2219220 2 -
2 np+1 2

Using equation (2.34), the above can be symbolically represented as:

R = cpl
where
N2
_ o (Sp)2
C, = By —— (2.40)
k2 = n2 + 1

In the above equations, In C, is the y-intercept and k, is the slope of the In e versus Ino,

curve.

The plots of In e} versus In g, for two tests are shown in Figure 10. A straight line is best re-

presented over the range of Ing, = 9.9to Ino, = 10.3.
Averaging the values of n, from both tests (Table B.2(c)) yields
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ny = 2.45967 (2.41)

It was necessary to calculate n, before B}, because B, is a function of n, as well as S,, (2.40).

Because S, has not yet been determined, B, will be left for now as a function of S;.

Since In C, is the y-intercept, we have

0 o \E
in{ B225222 \ _ y
n, + 1 intercept

0 Nz
B21(Sp,) 2

= eyimrcopt
n,+ 1

0 e
Bao = (Sp) 2 (np + 1) e¥imercen

Averaging the values of BY, from both tests (Table B.2(d)) yields

B° = S_1'22984(2.370096 X 10'18) (2.42)
22 22
ne and B,

The constant n, is evaluated in a similar manner to n, using the two losipescu tests in the 1-2

plane along with the 10°, 15°, 30°, and 45° off-axis tests. The expression for e} is written as

follows:

Ng
0 —
IR _ Bss(See) 2 ng +1

et 1 (2.43)

Using equation (2.34), the above can be symbolically represented as

6 = Co0g’
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where

0 Ne
Bgs(Ses) 2

C. =
6 ng + 1

ke = ngt+1

The irreversible strain eff can be written as:

&5 = &g — &g = &g ~ AgcTs

The irreversible strain ¢! may be calculated in two different ways. The first scheme uses the
average value of A determined in the previous section. The second scheme uses the value
of Ag determined for each separate test. Since it is not known a priori which scheme will yield
the most accurate value of n;, both schemes are used to determine separate values of n,.
These values are compared with experimental results later to determine a best fit value.
Figure 11 shows a least square fit to be best represented in the following ranges: losipescu
Test 1 (In 04=8.7 to 9.5), losipescu Test 2 (In 0,=8.62 to 9.51), 10° Off-Axis Test (In 04=8.38 to
9.16), 15° Off-Axis Test (In ;= 8.14 to 9.0), 30° Off-Axis Test {In 5,=8.62 to 8.91), and 45° Off-
Axis Test (Inoy=>8.25 to 8.46). The following result is based on the average Ag value of

1.18373 x 1078 (psi~).

Averaging the value of ng from the six shear tests (Table B.3(a)) yields

Nga = 2.54504 (2.44)

where the subscript 6A represents the value of ng calculated using the average value of Ag.

Averaging the value of ng from the six shear tests (Table B.3(b)) yields

neg = 2.53355 (2.45)
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where the subscript 6B represents the value of ng calculated using the individual test values

Of Agg.

Comparing the plots of In i} versus In o, in Figure 41 shows that the 0 ° losipescu test best
represents a straight line. Therefore, the value of ng from this test is also considered in the
best fit scheme in the following section. Actually, two values of n, exist for the 0 ° losipescu
test; a value based on the average Ag compliance and a value based on the Ag compliance
of the 0° losipescu test. These values are represented. by the subscripts 6C and 6D respec-

tively and are listed below.

nec = 3.04940 (2.46)

Ngp = 3.1854 (2.47)

Because both Bf; and Sg must be calculated from a pure shear test in the 1-2 plane, one of
them is redundant (see equation (2.43)). Since B is simply a multiplicative constant which
shifts the curve of in e} versus In o, to the left or right, it is arbitrarily set equal to the value

of 1 in this work.

B = 1 (2.48)

2.4.4.2 The S“ Parameters

With the exception of S,, and S, the S; parameters are calculated from the off-axis coupon

tests. S, is calculated from losipescu tests in the 2-3 plane and S is calculated from losipescu

tests in the 1-2 piane.
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The Constant S,,

The equation governing the irreversible strain response in a 2-3 plane losipescu test is shown
below.
904(z")

iR Z » ’
e = jo-;— B, (z — z etz (2.49)

In the same manner as equations (2.38), (2.39), and (2.34), the above can be symbolically re-

presented as

o = ol

where

N2
Su) 2

22 (S4q) ng +1
2(n, + 1)

D
]

k4 = n2+1

Because n, has already been calculated and BY, has been calculated as a function of S,,, S,,
may be calculated in terms of BY,. However, examining the stress-strain behavior of the 2-3
plane losipescu tests as shown in Figure 6, the stress-strain response is essentially linear *.
This observation means the irreversible portion of €, is zero. If ¢ is zero and n, and B, have
been determined (and are used in the irreversible strain expressions of other strain compo-

nents), then S,, must be set equal to zero.

Sy =0 (2.50)

1 These tests did not fail in a shear mode. Therefore, their ultimate strain values may be significantly
larger. It is possible that these specimens would show non-linear behavior at higher strain levels.
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The Constant S;;

In the same manner as the A, parameters, the S; parameters are assumed to obey
transversely isotropic conditions. Therefore, S, (j = 1,2,3,56), S5 (j = 1,2,3,4,6), and Sg
(i = 1.2,3,4,5) are all set to zero. Likewise, S;; = S, , Sy = Sy, Sss = Sgs , and in general,

8; = S;. The expression for S, in terms of S,, and S,, must hold as well.

s
Sg3 = Spp — —%“- (2.51)

However, because S,, = 0, S;; must equal S, .

Sa3 = Sy (2.52)
The Constant See

As mentioned previously, the Sg parameter is determined from losipescu tests in the 1-2
plane. The equation governing the irreversible strain state ef® in this test was shown previ-

ously to be

&5 = Cg0p"

where

0 Ne
Bge(See) 2
ng + 1

CGE
kG = n5+1

Because BY = 1, the expression for Sg may be written as
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Ng
(See) 2
n (_ns—-i-—1_ = Yintercept

N
(866)—2_ = (ns + 1)eY|mrcopt

2
866 = [(ne + 1)e)’|mor-:opt]n_8

Note that S is a function of ng. Therefore, there will be four values of Sg; corresponding to the

four values of ng (Nga,Ngg,Nge, Ngp ). The following value of Sgs is calculated using ng,.

Averaging the values of S from tests 1 and 2 (Table B.3(c)) yields a value for Seea Of

Sesa = 1.96639 x 10~ "3 (2.53)

in an analogous manner, Sgg, Sgec, and S, are calculated to be

Sees = 1.805796 x 10~ "2 (2.54)
Seec = 1.26342 x 10~ 12 (2.55)
Seep = 1.839071 x 10~ '2 (2.56)

The remaining S; parameters are calculated from off-axis tests.

The Constants S“, 312, and Szz

As mentioned previously, an off-axis test introduces not only the desired shear stress, but
normal principle stresses parallel and perpendicular to the fibers. Therefore, an off-axis
coupon test will have non-zero stress components o,, ¢, and Og (14;). The ratio of these

stresses depends on the off-axis angle, but throughout the loading, equilibrium requires that
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they be proportional. In other words, the ratios of these stress components do not change

. . (o - .
during loading (i.e. 0_—' = const., % = const., etc.). This is a very important result because
2 [}

it allows the three remaining S; parameters, S,,, S,, , and S,, to be calculated from three
separate off-axis tests 2,

The expression for the irreversible strain in the 1-2 plane (eff) is written

dog(z’
o5 = 5 B (z ~ 28 ) gy (257

where for the combined stress state Gy, 0, , 04

dz = \/844d0] + $5,do + 28,,do,do, + Seedo?

Writing do, and do, in terms of do, gives

doy = cot ¢ dog

do, = tan ¢ dog

where

0] Angle of Fibers from the Loading Axis

Therefore,

dz = /Sy cot’p + 28, + Seg + Sy tan’e dog (2.58)

z = /81y cot’p + 28, + Sgq + Sy tan’e o

Z It was mentioned earlier in chapter 2 that the endochronic equations were written for strain in terms
of stress to facilitate the calculation of the S;; parameters. Note that in the off-axis tests, the strain
component ratios are not proportional for nonlinear response. Because of this it would be very dif-
ficult to calculate the S;; parameters if stress were expressed in terms of strain.
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Substituting the above expression for z into the integral equation (2.57) gives

0
- _Bes
n6+1

eIR

Ng
[S11coffp + 28, + Sgq + Sy tan’p ]2 oge **

Using equation (2.34), equation (2.59) can be symbolically represented as

&g = Coop?

where

g0
Cs = 66

ng + 1

Ng
[S1100t%p + 2(Sy, + Sgg) + S,y tan’o]2

ks = ng+ 1

(2.59)

For three off-axis tests of different angles, the above expression yields three equations for the

three unknown parameters S,,, S,, , and Si2. To use these equations, the IneR is plotted

against the In g, for each off-axis angle. Figure 11 shows these plots for the angles of 10°, 15°,

30°, and 45° (because four tests were available, four sets of three different off-axis tests were

utilized).

Pindera and Herakovich " rearranged the above equations to yield simple equations for de-

termining 8,,, S,,, and S,, . These equations (egs. (5.22) and (5.23) in Pindera and Herakovich)

are shown below.
2
S11=(ng + )N x Q
2
322= (n6 + 1)"6 x ¥

1 g2
S12= o {[("6 + DAss(o) |Te — [311C(Pi + Szzt(Pi] - 566}

The Endochronic Theory
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where

Q= {[AES((P‘I)% - Age(@z)_'%][t% - '“Ps] - [Age(%)—"zs— - A;s((Ps)—’%s-][t‘m - t‘P'z] }

[C<P1 - C<P2] [“P1 - t‘Ps:‘ - [C‘P1 - c<p3] [“P1 - t‘92]

¥ = {[A;s((pﬁ'% - Age(%)"%][cw - C‘Ps] - [Aas((P1) Ns = Ags(9a) s “6 [C(P1 - C‘Pz] }

[t(p1 - t<p2] [c<p1 - C<p3] - [t<P1 t(F’?,] [C‘P1 - C‘Pz]

0

A;S((p) [811 Cot ¢+ 822 tan ¢ + (2812 + 366)] 2

Ng + 1
where i can be either 1,2, or 3, t¢, = tan?p, and cp, = cot,

Using the above equation set along with plots similar to Figure 11 allows S, S,,, and S,, to
be calculated. Using the four off-axis tests available in conjunction with the four sets of ng and

Ses produces sixteen different sets of parameters. These sets are shown in Table 1.

2.4.5 "Best Fitting” the Parameter Sets to Experiment

It was mentioned earlier that a condition imposed on §; by thermodynamic constraints is it
must be positive definite. Therefore, of the sixteen parameter sets shown in Table 1, only
those which are positive definite are possible choices. Appendix C shows the conditions
necessary for a tensor to be positive definite. From these conditions, Table 1 lists the pa-
rameter sets which are positive definite and those which are not. The parameter sets which

are positive definite are numbered in Table 2 for ease of reference.

To determine which of the positive definite parameter sets best fits experimental test results,

the parameter sets are used analytically in a comparison with off-axis test results and are then
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Table 1. Possible S, Parameter Sets Marked As Positive Definite or Non-Positive Definite

Angle Set
(15°,30 °,45 °)

Angle Set
(10 °,30 °,45 °)

Angle Set
(10 °,15°,45°)

Angle Set
(10 °,15 °,30 °)

Nea  2.54504E-00

Sea  1.96639E-13
Si 2.34704E-14
S 3.79959E-13

22
Sy -6.36714E-14

Nga 2.54504E-00

Sea  1.96639E-13
Sy  3.46034E-15
S,  3.19929E-13

Sy -2.36515E-14

Nea  2.54504E-00
Sesa  1.96639E-13
Sy  -8.53148E-15
S,  -6.57692E-14
S  1.75194F-13

Nea  2.54504E-00
Sea  1.96639E-13
S,,  -1.07261E-14

Szz '1.04893E'12
S 2.25771E-13

=iz

Positive Definite

Non-Positive Definite

Non-Positive Definite

Non-Positive Definite

N 2.53355E-00
Ses  1.80580E-13
S,  1.05681E-14
S,  2.53695E-13
S 2.26620E-15

nsa 253355E'00
Ses  1.80580E-13
Sy 9.79461E-16
S,  2.34929E-13
S, 2.14432E-14

Nes  2.53355E-00
Ses  1.80580E-13
Sy,  -4.76695E-15
S,  5.01046E-14
S, 1.16729E-13

Nes  2.53355E-00
Sea  1.80580E-13
Sy -5.81861E-15
S,  -4.21020E-13
S,  4.40965E-13

Positive Definite

Non-Positive Definite

Non-Positive Definite

Non-Positive Definite

Nee  3.04940E-00
Sec  1.26342E-12
Sy, 1.49223E-13
S,  2.86855E-12
S -4.38706E-13

Nec  3.04940E-00
Sec  1.26342E-12
Sy 2.26566E-14
S,  2.48885E-12
Se  -1.85573E-13

Nec  3.04940E-00
Sec  1.26342E-12
Sy -5.31935E-14
S,  4.92545E-14
S 1.07215E-12

Nec  3.04940E-00
Sec  1.26342E-12
Sy -6.70750E-14
S,  -6.16938E-12
S,  4.39207E-12

Positive Definite

Non-Positive Definite

Non-Positive Definite

Non-Positive Definite

N 3.18540E-00
Seso  1.83907E-12
Sy 1.10652E-13
S  3.57840E-12
Sp  -7.48855E-14

N 3.18540E-00
Seo  1.83907E-12
Sy 1.17136E-14
S,  3.28159E-12
S 1.22990E-13

Neo  3.18540E-00
Seso  1.83907E-12
Sy -4.75791E-14
S,  1.37453E-12
S 1.10616E-12

Neo  3.18540E-00
Sep  1.83907E-12
S;y  -5.84304E-14
S,  -3.48663E-12
Se  1.35624E-12

Positive Definite

Positive Definite

Non-Positive Definite

Non-Positive Definite
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Table 2. Positive Definite Parameter Sets

Parameter Set

S 1

‘S 22 S 12 S e Ne
1 1.49223E-13 | 2.86855E-12 | -4.38706E-13 | 1.26342E-13 | 3.04940
2 1.71360E-14 | 3.28159E-12 | 1.22990E-13 | 1.83907E-12 | 3.18540
3 2.34704E-14 | 3.79959E-13 | -6.36714E-14 | 1.96639E-13 | 2.54504
4 1.10652E-13 | 3.57840E-12 | -7.48855E-14 | 1.18391E-12 | 3.18540
5 1.05681E-14 | 2.63695E-13 | 2.26620E-15 ] 1.80580E-13 | 2.53355
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used in a laminate analysis to compare with angle-ply laminates. The parameter set which

best fits the experimental data is chosen.

2.4.5.1 Off-Axis Test Comparison

The expression for g¢ in an off-axis specimen (2.56) is

0
B N
£g = Agglg + —ns—fT[sﬂ cot’p + (28, + Sgg) + Sy, tan’p] 2 o+ (2.61)

From this expression, e, may be plotted against o, for any desired off-axis angle ¢. A simple
program was written for equation (2.58) that uses S, S,, , Sy, S » N, and ¢ as input param-
eters and produces data for 6, versus g. These data were plotted against experimental data

and the plots are shown in Figure 12 through Figure 16 for the various parameter sets.

Parameter set 2 (Figure 13) fits the experimental data most accurately in an average sense.
Parameter sets 1,3,4, and 5 all seem to match the 15°, 30°, and 45° experimental data very
well. However, they do a poor job of modelling the 10° off-axis behavior. This is to be ex-
pected because, as Table 1 shows, these parameter sets were all derived from the combina-
tion of 15°, 30° and 45° off-axis tests. Parameter set 2, however, was derived from the
combination of 10°, 30°, and 45° off-axis tests. Although it matches these tests well, parameter

set 2 also does an adequate job of modelling the 15° off-axis test.

2.4.5.2 Angle-Ply Laminate Comparison

Unlike the off-axis lamina tests, the loading within the layers of a laminate is not proportional.
Therefore, no simple expressions exist for strain in terms of stress. Instead, the endochronic

equations must be integrated throughout the laminate’s load history. This is done in a step-
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Figure 12. Analytical/Experimental Comparison of Off-Axis Tests Using Parameter Set 1

The Endochronic Theory 58




04 08 12 16 005 1.0 15
€¢ (%) €¢ (%)
(a) 10° Off-Axis Comparison (b) 15° Off-Axis Comparison
8
=6 ~
2 2
s’ o
2t
O d L 1 | 1 1 o 1 i [l 1 4 1
04 0.8 1.2 0l 0203 04 0.5 06 07
€¢ (%) €6 (%)
(c) 30° Off-Axis Comparison : (d) 45° Off-Axis Comparison

© ENDOCHRONIC THEORY

EXPERIMENT

Figure 13. Analytical/Experimental Comparison of Off-Axis Tests Using Parameter Set 2

The Endochronic Theory




o

8
" 6
x
b 4
2
0 04 08 12 16
€, (%)

(a) 10° Off-Axis Comparison

8
~ 67
»
X
o 4
2 o
0 04 0.8 1.2
€6 (%)

(c) 30° Off-Axis Comparison

© ENDOCHRONIC THEORY

Oe (KSI)

0 0.5 1.0 1.5

€, (%)

(b) 15° Off-Axis Comparison

Os (KSI)

1 1 1 1 i

01 0203 040506 O7
€¢ (%)

(d) 45° Off-Axis Comparison

EXPERIMENT

Figure 14. Analytical/Experimental Comparison of Off-Axis Tests Using Parameter Set 3

The Endochronic Theory

60




(a) 10° Off-Axis Comparison

8
-~ 6T
5
X
e 4l
2 L
0° 04 08 12
66 (°/°)

(c) 30° Off-Axis Comparison

© ENDOCHRONIC THEORY

Og (KSI)
(6] (o)}

il
[
1.

€, (%)

~
v

(b) 15° Off-Axis Comparison

Og (KSI)

I [ y i

(6)]

o L
€¢ (%)

(d) 45° Off-Axis Comparison

EXPERIMENT

Figure 15. Analytical/Experimental Comparison of Off-Axis Tests Using Parameter Set 4

The Endochronic Theory

0.1 0203 040506 07

61



O, (KS1)
o v H» O O

O, (KS1)

04 0.8 1.2 1.6
€, (%)
(a) 10° Off-Axis Comparison
0.4 0.8 1.2
€¢ (%)

(c) 30° Off-Axis Comparison

© ENDOCHRONIC THEORY

Og (KSI)
w o

0%= .0
€, (%)

(b) 15° Off-Axis Comparison

1.5

Og (KSI)

L [ 1

€¢ (%)

(d) 45° Off-Axis Comparison

EXPERIMENT

Figure 16. Analytical/Experimental Comparison of Off-Axis Tests Using Parameter Set §

The Endochronic Theory

0.1 0.20.3 040506 07

62




-120 -50

Oy (KS1)

1

-0 -02 -03 -04 -05

(a) [( £ 10),,], Laminate Comparison (b) [( £ 20),,], Laminate Comparison
-35 -30
~30r 24
= 25 =
) ! » -8t
x -20 £ X
g ISt s
-10}
-5 6
O 1 L [ L o - - 1 N -J -
-0.1 -0.2 -0.3 -04 -0.5 04 -0.8 I.2' 1.6

(c) [( £ 30),,], Laminate Comparison (d) [( = 45),,], Laminate Comparison

© ENDOCHRONIC THEORY

EXPERIMENT

Figure 17. Analytical/Experimental Comparison of Angle-Ply Laminate Tests Using Parameter Set
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wise fashion and for each step, the loading is assumed to be proportional. The step-iterative
constant stress and constant strain algorithms developed in Chapter 3 were used in a finite
element program to analyze laminate problems using a four element mesh. The flow charts

for this program are analogous to those in Figure 30 and Figure 32 in Chapter 3.

The output from the finite element analysis was plotted against the experimental data * for
[ £10], [ £ 20], [ + 30],, and [ + 45], angle-ply laminates. These plots are shown in
Figure 17 through Figure 21. Examining these figures shows that parameter set 2
(Figure 18) also fits the laminate experimental data most accurately. In fact, the correlation
may be described as excellent. Many of the other parameter sets match one or two of the
laminate tests well, but caused the solution algorithm to diverge for the other tests. This di-

vergence is caused by certain stress components decreasing in magnitude (unloading) and

is discussed in more detail in Chapter 4.

From the off-axis and laminate test comparisons, it is obvious that, overall, parameter set 2
correlates best with experimental results. With this parameter set chosen, a complete set of
endochronic constants has been derived. The complete set of endochronic parameters are

shown in Table 3. From this point on, these are the parameters used in all analyses.

2.5 Summary

This chapter has shown the development of a full set of three-dimensional endochronic
equations, the development of the incremental form of these equations, and the experimental
determination of a complete set of endochronic constants. The endochronic equations, based

on the Conservation of Energy and the Dissipation Inequality, are slightly different in form
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Table 3. “Best Fit” Set of Endochronic Parameters for AS4/3502 Graphite-Epoxy

Auw = 5.12687E-08 A, = -1.70722E-08 Ay = -435111E-07
Az = 6.55133E-07 Ay = 217931E-06 Aee = 1.18373E-06
S4 = 1.17136E-14 S, = 1.22990E-13 S22 = 3.28159E-12
S, = 3.28159E-12 S+ = 0.00000E-00 Ses = 3.28159E-12
Bs#1 = 1.90645E-16 B%. = 3.14838E-04 B% = 1.00000

R, = 2.44791E-00 n, = 2.459867E-00 ne = 3.18540E-00
where

Ajj units are 1/psi

All other parameters are dimensionless
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from Pindera and Herakovich’s* equations, due to a softening rather than stiffening behavior

for compression loading in the fiber direction.

The incremental form of the endochronic equations allows them to be used in a finite element
program. During each increment of loading, stress components are assumed to be propor-
tional to one another and to the loading increment. This allows explicit integration of the
equations. The final incremental form of the equations is a summation expression which may

be implemented into a finite element or laminate analysis program.

Determination of the endochronic constants required analyzing uniaxial compression tests,
off-axis tension tests, and losipescu shear tests. The final set of eighteen endochronic pa-
rameters obtained is unique to AS4/3502 graphite-epoxy. These constants are further unique

in that they were derived assuming compression loading in the fiber direction.
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3.0 Finite Element Program AMNISAP

3.1 Introduction

Out-of-plane interlaminar stresses are present in boundary layer regions near all free edges
of notched angle-ply laminates subjected to in-plane loading. In order to account for this in
a finite element analysis, three-dimensional elements are required. This study uses a three-
dimensional, material nonlinear finite element program which is a modification of an existing
iinear eiastic three-dimensionai program *. The present program is caiied AMNISAP, which

is an acronym for Anisotropic Material Nonlinear Inversion Symmetric Analysis Program.

Because of the extreme stress gradients present in the immediate region of the hole, a fine
mesh was used in this region. In order to handle the large storage requirements produced
by the fine mesh, a large capacity computer was necessary. Storage and run time efficiency
were increased by utilizing an inversion symmetry condition and by running the program on

a computer with vector processing capabilities.
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Incorporation of the endochronic constitutive equations into a finite element program requires
solving a set of nonlinear equations. There are many algorithms which may be used to solve
such equations; each has its own advantages and disadvantages. This chapter examines
some of the commonly used algorithms. The two algorithms used in the finite element pro-

gram AMNISAP are developed and described in detail in this chapter.

3.2 Inversion Symmetry

Inversion symmetry is a symmetry condition present in all anisotropic shelis and plates whose
geometry, elastic coefficients, boundary conditions and loading are 180 degrees rotationally
symmetric about some axis ©. This axis of symmetry, commonly referred to as the center of
symmetry, is normal to the body and intersects the origin of the in-plane coordinate axes. The
two-dimensional inversion symmetry transformation consists of rotating the shell or plate
through 180 degrees about the axis of symmetry. Defining an x, coordinate system (i=1,2,3),
with the x; coordinate the axis of symmetry, a symmetry transformation changes the coordi-
nates x, (a = 1,2) of each material point of the shell or plate into —x,. Figure 22 shows an

anisotropic shell exhibiting the required conditions for inversion symmetry.

A plate’s requirements are less stringent than a shell’s requirements and are listed below.

INVERSION SYMMETRY PLATE REQUIREMENTS:

GEOMETRY

d(X1, X2) = d( "'X1, —Xz)
ELASTIC COEFFICIENTS
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Figure 22. Anisotropic Laminated Shell Exhibiting Inversion Symmetry Requirements
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CaByp(x1’ Xp) = CaByp( ~Xq, ~Xp)

Fapyp(X1: X2) = Fapypl =Xy, —X3)

DaByp(Xh Xg) = DaByp( —Xq, T Xp)

BOUNDARY CONDITIONS

B(x4, %5) = B( —x%4, —Xj)

LOADING

P(xq, Xp) = P( —xq, =%p)

M(X1,X2) = M( "’X1, "X2)

In the above, d is the distance from the center of symmetry to the plate boundary, C,, are the

aByp

extensional stiffness coefficients, F.5, are the bending-extension interaction coefficients, and
Dopyp are the bending stiffness coefficients. B represents the boundary conditions, P repres-
ents the in-plane loads, and M represents moment (bending) loads. The response of an in-

version symmetric plate to this loading will follow the relationships below.

INVERSION SYMMETRIC PLATE RESPONSE:

DISPLACEMENTS
Uq (X4, X3) = Ug ( =xq, —=Xp)
Uy (X9, X3) = Up ( — x4, —Xp)
W (X9, %) = W ( =%q, —Xp)

STRESS RESULTANTS
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Oap (X1, Xg) = Top ( —Xq, ~X)
Ouz (X1.X) = — Tz ( —Xq, —Xp)

033 (X, Xg) = Oga ( =Xy, —Xp)

where o, = 1,2

In the above, U, and U, represent the in-plane displacements in the X4 and x, directions, and
W represents the out-of-plane displacements. The stresses O, are the in-plane components,

Oy are the out-of-plane shear stress components, and o, is the out-of-plane normal stress.

From these requirements, it is apparent that an angle-ply laminated plate with a central hole
under uniaxial loading (Figure 23) exhibits inversion symmetry. The center of symmetry co-

incides with the center of the hole.

By combining the inversion symmetry condition with the mid-plane symmetry condition which
is present in all symmetric laminates, only one quarter of the plate need be analyzed
(Figure 23). The mid-plane symmetry condition is invoked simply by fixing the mid-plane
nodal points’ out-of-plane displacements W. Exploitation of the inversion symmetry condition
requires modification of the finite element program. Appendix D gives a detailed description
of the modifications required. it is desireable to add a flag variable for each nodal point of a
finite element grid identifying those nodes which are independent and those which are de-
pendent. Once these modifications are made, both inversion symmetric and non-inversion

symmetric analysis may be performed with the same program.

Finite Element Program AMNISAP 75




L 4
[}

q q q 2999 9(

o O y. V. W
q d 999Q ¢ 4
( r.
¢ </
4 33499 I
q
X 2
o ° "S- S U Y
q
4 43999 d
| ‘\\ ‘ |
4 [EIXXI X
[ ]
P . v Y. W
¢ q q 4999 ¢q
: v, .. Ve ‘ll

Figure 23. Inversion Symmetric Quarter Plate Analysis Using 124 Element Mesh
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3.3 Vectorization

Even with the inversion symmetry condition fully utilized, the storage requirements for many
of the analyses performed in this study (dependent upon mesh refinement) were excessive for
the IBM 3090 or 3084 main frame computers at Virginia Tech. Therefore, the Cyber 205 super
computer at the NASA Langley Research Center was used. This machine easily handled the
storage requirements. An added bonus of the Cyber 205 is its parallel and vector processing
capabilities. Using vector instructions, one instruction performs many operations, thus re-
ducing CPU time significantly. The measure used to define this performance feature is
MEGAFLOPS (Millions of Floating Point Operations Per Second). The Cyber 205 operates in
the range of 50 to 200 MEGAFLOPS, depending upon the vector length. Appendix E shows an

example subroutine comparing scalar operations to vector operations.

Because many do-loops in a program are not candidates for vectorization and because there
are usually only a few do-loops which use the majority of CPU time, it is necessary to be se-
lective when vectorizing a program. To determine which scalar code subroutines were the
most time consuming, a timing option was run which output the total time and time per call
for each subroutine. Table 4 shows these results. it is noted that these results vary de-
pending upon job size. Table 4 shows that subroutines COLSOL (the global equation solver)
and ELKAY (calculates the element stiffness matrices) used 85% of the total CPU time for the
example considered. It is in these subroutines that the largest gains were realized through

vectorization.

Subroutines COLSOL, ELKAY, and STRESS were vectorized by an automatic vectorizing utility
named VAST. The FORTRAN program was run through this utility before it was compiled.
VAST replaces scalar do loops with vector syntax wherever possible. it also returns a listing

file which shows those do loops that were vectorized, lists those do-loops that weren’t
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Table 4. Timing Results for Scalar Linear Code Using a 20 Element Mesh

Subroutine Call Freq. % Call Total CPU CPU Time % Total
Counts Freq. Time (secs) Per Call CPU Time
ADDBAN 20 6 0.052793 0.002563 1
ADDRES 1 0 0.000767 0.000488 0
AMNISAP 0 0 0.015310 0.000000 0
ASSEM 1 0 0.045322 0.031250 1
BCIMP 1 0 0.017408 0.015625 0
BEDGE 20 6 0.000020 0.95E-06 0
BSTRS 1 0 0.040216 0.031250 1
CLEAR 1 0 0.009775 0.007813 0
COLHT 20 6 0.002568 0.000122 0
COLSOL 2 0 1.73258 0.750000 27
DMAT 2 0 0.001442 0.000488 0
DN16 2 0 0.000342 0.000122 0
DN20 2 0 0.000002 0.95E-06 0
DN24 2 0 0.000002 0.95e-06
ELKAY 20 6 3.78203 0.187500 58
ELSUM 2 0 0.042023 0.015625 1
ERROR 3 1 0.000006 0.000002 0
GCOORD 4 1 0.000060 0.000013 0
GPN16 2 0 0.000159 0.000061 0
GPN20 2 0 0.000002 0.95e-06 0
GPN24 2 0 0.000004 0.000002 0
INPUT 1 0 0.174491 0.125000 3
INVERT 180 53 0.004861 0.000027 0
LOADS 1 0 0.000744 0.000488 0
LOADV 1 0 0.002422 0.001953 0
STRESS 1 0 0.48726 0.250000 7
SYMDUMP 1 0 0.043696 0.031250 1
T 44 13 0.001848 0.000042 0
WRITE 1 0 0.046071 0.031250 1

TOTAL CALLS = 340

TOTAL CPU TIME = 6.499723 secs
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vectorized, and explains why certain do-loops were not vectorized. in many instances, simply
rearranging a do-loop will allow VAST to vectorize it. In other cases, the algorithm must be
rethought and changed. Besides using VAST on the above subroutines, a few do-loops
throughout the program were vectorized explicitly using vector syntax. The major gains,

however, were obtained through using VAST.

3.4 Program Efficiency Comparison

Table 5 shows vectorized timing results for a 20 element mesh (very coarse) model of a
compression loaded angle-ply plate with a central hole. The comparison is for linear elastic
analysis with no inversion symmetry. It must be noted that significantly larger speed factors
are possible using a more refined mesh due to larger array sizes. Table 5 shows an overall
speed factor of almost 4 with very little effort. Most of these gains were realized by rear-

ranging do-loops within the subroutines.

Table 6 compares inversion symmetry analysis (which requires a quarter plate) with half plate
and fixed node quarter plate analysis for a compression loaded [ + 30], laminate with a
central hole. The fixed node quarter plate analysis is performed with the nodes along the y-
axis fixed in the x-direction. These are approximate boundary conditions which give errone-
ous results in regions close to the y-axis but give acceptable results elsewhere *. Inversion
symmetry results agree with half plate results everywhere. Note that the half plate storage
requirements are more than 2.5 times the inversion symmetry requirements, while the inver-
sion symmetry requirements are only 1.2 times greater than the fixed node quarter plate re-
quirements. Half plate CPU time is more than 3.0 times that of inversion symmetry, yet
inversion symmetry CPU time is only 1.3 times greater than that of the fixed node quarter plate

analysis. Half plate total run cost is 2.9 times that of inversion symmetry, while inversion

Finite Element Program AMNISAP 79



Table 5. Vectorizing Timing Results for Non-Inversion Symmetric Linear Elastic Analysis Using a

20 Element Mesh

in COLSOL

Total Overall |COLSOL | ELKAY STRESS
Vectorization Run Time| Speed Speed Speed Speed
Modifications (CPU’S) | Factor Factor Factor Factor
AMNISAP in original form - 6.50 1.00 1.00 1.00 1.00
no vectorization
VAST applied to AMNISAP
(only subroutines ELKAY, 3.49 1.86 5.44 1.65 1.22
COLSOL, STRESS)
VAST applied to AMNISAP -
2 do-loops in ELKAY 3.18 2.04 5.42 1.91 1.22
modified (80 & 85)
VAST applied to AMNISAP -
2 more do-loops in ELKAY 3.02 2.15 5.39 2.09 1.22
modified (60 & 70)
VAST applied to AMNISAP -
2 more do-loops in ELKAY 1.75 3.72 5.41 6.97 1.22
modified (90 & 91)
VAST applied to AMNISAP -
do-loop 100 modified 1.66 3.93 7.61 6.97 1.22

Speed Factor =

Original Run Time

Vectorized Run Time
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Table 6. Inversion Symmetry Results for [+30 ], Laminate with a Central Hole Run on Scalar

Code
Half Inversion Fixed Node
Parameters Plate Symmetry 1/4 Plate

# of Elements 200 100 100

# of Nodes 2004 1041 1041

# of Equations 5338 2669 2698

# of Global Stiffness Terms 1,809,178 630,897 406,513
Total Storage (words)" 2,886,800 1,163,400 943,400
Maximum Half Bandwidth 5320 2606 366
Mean Half Bandwidth 338 236 150
CPU Time® 324.1 104.8 71.4
Run Costs (CRUs)" 356.4 124.3 99.2

* NASA Langley’s Cyber 205
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symmetry analysis’ total run cost is only 1.3 times that of fixed node quarter plate analysis.
In conclusion, for a fraction more of the fixed node quarter plate computer resources, half

plate results are realized by using inversion symmetry at a significant reduction in computer

resources.

If the results from Table 5 and Table 6 are combined, a total speed factor of 12 is realized
when comparing half plate non-vectorized analysis to inversion symmetric vectorized analy-
sis. Note also that this result is conservative being based on the speed factor for the 20 ele-

ment mesh.

3.5 Numerical Solution of Nonlinear Algebraic Equations

Nonlinearities in structural mechanics exist in two forms -- material nonlinearities and ge-
ometric nonlinearities. Material nonlinearities arise from nonlinear constitutive laws. Ge-
ometric nonlinearities are the result of finite changes in the geometry of the body. Many
numerical solution techniques are currently available for solving the set of nonlinear algebraic
equations arising from both causes. However, all of these techniques have limitations. Some
methods work well for geometric nonlinearities while others work best for material nonline-
arities. The accuracy and efficiency of each method varies widely as well. All of these factors

and features must be accounted for when choosing a method for a particular application.

This study focuses on material nonlinear finite element analysis. The solution techniques
most commonly used for material nonlinearities are: (1) Incremental or stepwise procedures,
(2) Herative procedures, and (3) Step-iterative or mixed procedures. Each of these methods

has its own distinct advantages and disadvantages and each one was considered as a sol-
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ution technique in this study. Common to all of these techniques is the set of equations they

must solve. This set is typically written for a single element as
(K] = (7 (3.1)
where
[K]=x1+ [k™]
[k™] = [KMquy. (Fp)]
{U} = nodal displacements

{F} = nodal forces

[k] = stiffness matrix
[K] = linear portion of stiffness matrix
[KNL] = nonlinear portion of stiffness matrix

Figure 24 shows a typical force/displacement curve for a given element and a typical nonlin-

ear stress/strain curve. Following is a discussion of the solution techniques.

3.5.1 Incremental Procedures

Incremental procedures involve dividing the load into a series of increments. A solution is
generated for each load increment until the final load is reached. Normally, the load incre-
ments are equal in magnitude but this is not a requirement. The stiffness matrix [K] is a

constant for a given load step, but may change for each load increment. This matrix is re-
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ferred to as the tangent stiffness matrix in this procedure. For each incremental set of loads,
a set of incremental displacements are generated. The final set of loads and displacements

is the sum of the incremental loads and displacements. This is written symbolically as

{F} = {Fo} + .é {AF;} (3.2)

"

U} = (U} + £ {au}

where the A symbol represents an increment, M is the total number of increments, and sub-

scripts O refer to the initial state. At a given load step,

{Fi} = {Fo} + é {AF} (3.3)

(U = {u + £ {au)

The incremental element equations are then written as

[Ki-1]{au} = {AF} for i=1.23,..M (3.4)

where

[Ki-1] = [Kica({Ui=1}. {Fi=1})]
Figure 25 depicts this incremental procedure.

The accuracy of the incremental method is very dependent upon the load step size. The ac-
curacy can be improved by taking smaller load steps. However, as load step size decreases
and the number of load steps increases, the efficiency of the procedure decreases because

[K,—,] must be computed for each load step.
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Figure 25. Force/Displacement Curve for a Typical Incremental Procedure
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3.5.2 Iterative Procedures

Iterative procedures consist of a sequence of calculations in which force equilibrium is more
exactly satisfied with each new iteration. The sequence of calculations (or iterations) is con-
tinued until the force imbalance (or residual) falls below an acceptable magnitude. The full
force is applied at each iteration of this method. After each iteration, the force residual is

calculated and used in the next iteration to compute the displacement.

The two most common iterative techniques used in finite element analysis are 4. (1) Func-

tional iterations (or successive substitutions) and (2) the Newton Raphson method. In both of

these methods, the finite element equations are written
[K1{u} = {F} - {F"} (3.5)
where
[K] = linear portion of stiffness matrix
{F} = applied load vector

{FNL} = psuedo load vector resulting from [kN] {V}

3.5.2.1 Method of Functional Iterations

This method seeks to find {U} for a given {F }. It starts with an initial estimate of the dis-
placements {U} (solving the linear part of the finite element equations yields a reasonable

estimate) and performs the following iteration sequence
(kI{U} = ;) = {F"({u"3)} (3.6)
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where r, r — 1 refer to the iteration cycle. The sequence of iterations is continued until the
difference in displacements between successive iterations falls below a preset value. The
linear stiffness matrix [K ] is decomposed only once and remains constant throughout the it-
erative process -- the changing nonlinear terms are contained in the psuedo load vector
{FM}. Figure 26 shows a schematic representation of this iterative procedure for a one degree

of freedom system.

3.5.2.2 Newton Raphson Method

In the Newton Raphson method, a force residual represents the initial unbalance between the

two sides of equation (3.5). This force residual is written

(U} = K1y — {F} + {F"} 3.7

This method expands the force residual {f(U) } in a Taylor Series about the initial estimate.

{f(U+AU)} = {f(U)} + [-a-{fT(u"l})—}-] {auy + Error ({aU})? (3.8)

An approximation used in the Newton Raphson Method is to truncate the series after two
terms which yields the error term in the above expansion. A requirement of the method is to

set the expanded force residual to zero, {f(U + AU)} = {0} . These approximations yield

5{f (L)}

a{u} — o 1{aUr = —{1(U)} 4 (3.9)

Now from equation (3.7), with {F} independent of {U}

NL

[ 0} P ——] = [K] + [K(U)] (3.10)
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Combining (3.9) and (3.10) gives

K + KW {AU} = — {£(U)}

In terms of the iterative cycle, this is written

[ K] + KU ]{Au"’} = = {r(u"=")} (3.11)

Note that each iterative cycle of the Newton Raphson Method requires computation of {f(U)}
, computation of | k(U) ], and decomposition, forward reduction, and back substitution to
compute { AU }. Figure 27 shows a schematic representation of this iteration procedure,
where {Kr} is the tangent stiffness matrix and the superscript r represents the iteration num-

ber.

3.5.3 Step-lterative Procedures

Step-iterative procedures are simply a combination of incremental procedures and iterative
procedures. These method yields higher accuracy but may require more computational effort.
A typical step-iterative method is depicted in Figure 28. More details on this method are

presented in a later section.

3.5.4 Procedure Comparison

The advantages of the incremental procedures are many fold, not the least being simplicity.

They are easy to program, they admit a simple physical interpretation, they are applicable to

nearly all types of nonlinear behavior, and they provide a relatively complete description of

Finite Element Program AMNISAP 90




Fapplied _[23] \);[R%]—_

F——— au! < AUZ —AU3 [~ AU*

UF=I§iAU'

Figure 27. Force/Displacement Curve for Newton Raphson Procedure

Finite Element Program AMNISAP

91



AF3

u! u2

Figure 28. Force/Displacement Curve for a Typlical Step-Iterative Procedure

Finite Element Program AMNISAP

92




the load-deformation behavior. However, their disadvantages are just as numerous. Incre-
mental procedures require solving a linear system of algebraic equations at each step which
necessitates formation of [R], and requires decomposition, forward reduction, and back sub-
stitution to compute {AU }. Also, there is no rational way of selecting step size or checking

convergence of the solution; hence the accuracy of the solution tends to drift.

The advantages and disadvantages of the iterative methods must be separated to include
those of the functional iterative method and those of the Newton Raphson method. The ad-
vantages of the functional iterative method are its simplicity of application -- the stiffness
matrix {K ] is decomposed only once -- and the solution’s accuracy may be specified through
the convergence criterion. However, the functional iterative method is not suitable for highly
nonlinear problems. It displays slow convergence (and sometimes divergence) for elasto-

plastic or near elasto-plastic problems, and the solution converges in a linear fashion requir-

ing many iterations.

The Newton Raphson method’s advantages are that it works well for highly nonlinear prob-
lems, and that it converges quadratically requiring fewer iterations (not necessarily faster CPU
time). Its disadvantages include slow convergence for highly nonlinear problems, conver-
gence problems due to oscillation about a local maximum or minimum point, and a high

computational expense because [K + K] is decomposed many times.

The step iterative procedures combine the advantages of the incremental and iterative meth-
ods and tend to minimize the disadvantages. Because of this, step iterative methods have

become increasingly prevalent in modern nonlinear finite element analysis.

Many factors were considered when choosing a nonlinear solution technique for the finite el-
ement program of this study. The first of these factors was the complexity of the endochronic
equations. Explicit differentiation with respect to the displacements, as required in the Newton

Raphson method, is very difficult if not impossible with the form of the endochronic equations.
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Numerical differentiation requires still more complexity and computational time as well as an
additional approximation in the solution. The form of the endochronic equations was also
considered -- strain is written in terms of stress. Although a rederivation of the equations
could yield stress in terms of strain, the endochronic parameters are much more difficult to
determine with the equations in this form. Also, as shown in Chapter 2, the equations can only
be integrated incrementally, with proportional loading assumed over each increment. There-
fore, the form of the endochronic equations limited the choice of solution techniques. The final
factor considered was the size of the finite element analysis. A method requiring many de-
compositions, forward reductions, and back substitution of the stiffness matrix would consid-

erably increase CPU time.

With all these factors considered, two step-iterative procedures were chosen - the constant
stress method and the constant strain method. These methods are discussed and developed

below.

3.5.5 Constant Stress Method

The constant stress method is an initial strain method in that the total strain is separated into
a conservative portion and a non-conservative portion. The non-conservative strain (also
called the irreversible strain) is integrated separately as a psuedo force array which is added
to the applied force array to yield the total force array. Therefore, all the nonlinearities in the
equations are represented by this psuedo force array. Because of this, the stiffness matrix
[K ] is decomposed only once in the solution process. This reduces CPU time and increases
computational efficiency. The initial strain formulation of the finite element equations is shown

below.
ey = £ + &™) (3.12)
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%} = [Al{o}

"™y = Rz

where
{sR} = reversible portion of strain
{s'R} = irreversible portion of strain
Z = intrinsic time scale
Therefore,

{0} = IAI" ™) = (A1 e - &)
The strain energy of an element (A*) is expressed as

A = [ eV = [l ({2} (0} = £ (o})av

where

v® = volume of an element

Combining (3.13) and (3.14) gives the strain energy in the form

(3.13)

(3.14)

A= fo(F 70 — @A TR - I + Z AT av

A% = [ (YA "6} ~ 20e)TIAL (R} + £ TIA T e RY) av

The strain-displacement equations can be written
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{e} = [B{U} (3.16)

where [B] is a matrix containing the derivatives of the finite element interpolation functions.

The transpose of the strain vector is
(e} = {Uy'BI'
Therefore,
A® = j'v%({U}T[BlT[Al_1[Bl{U} - 2{U}"BI"IAI (&™) + ™A1 () oV (3.17)
The potential energy of an element due to externally applied forces is given by
re = - {uy {r% (3.18)
where

{P®} = applied load vector for a given element

The total potential energy of an element (I1°) is the sum of the strain energy (A®) and potential

energy (I'®).

n® = A® + r® (3.19)

The total potential energy of the finite element mode! is the sum of the elemental potential

energy over the elements.

N
n=x ne (3.20)

Therefore, the total potential energy is
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_ N 1 i TroTea—~1 _ T Teas— 14 (R
n= e§1[ Sz (U BIIAITBIUY aV ~ [ .{U}'BI"IA] " {e"*} av ] + (3.21)

92::1[ Jv‘{ a1~ { 'R} av — (U {F%) ]

where

N = number of elements

In order to obtain the correct displacement solution solution from (3.21), the total potential
energy IT must be minimized. This is done by taking the partial derivative of the total potential

energy with respect to the displacements as follows

a1 _ - Trar~1 - Tiag— 14 IR _ [pe
Sy = © e§1[ feBIAI Bl av U} = fLB1TAI " (" av ~ (P} | (3.22)

Defining:
K] = {+BI"IA1 " '[B] 0V
and
{3} = fBI"IaI e} av
{} = {3} + (P}
where

[K®] = element stiffness matrix

("}

i

element psuedo load vector
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{P°} = element force vector

{f’} = element total load vector
gives

8231{[K31{U} —{h = ©

where

N = number of elements

Writing the above in global matrix form yields
KU} = {F}
where
{Fy = {F""} + (P}

N
{FNL} = % jv.[B]T[A]_1{s'R} dv = global psuedo force array
e=1

{P} = {P®} = global applied force array

Mz

e
The iterative form of equation (3.23) is written as

ta {ui”} = {F({au ="} + (R

where

r = iteration cycle

Finite Element Program AMNISAP

(3.23)

(3.24)

98




i = load step number

Note that the full load is applied at each step resulting in total (as opposed to incrementat)
displacements. This differs somewhat from true incremental procedures in which only an in-
cremental load is applied at each step. Although the full load and futl disptacements are re-
presented in the equations, the psuedo force array {FM } is a function of the incremental

stresses {AG } at the previous iteration.

With the equations written in the above form, the constant stress method simply defines the

order of calculations. This order of calculations is outlined below:

1) For a given load step i and iteration r, convergence is checked comparing the total dis-

placements at the present iteration {U!"} with the total displacements at the previous iteration

{Ufr—ﬂ} .
2) The element strains are computed from the element displacements

" = U} (3.25)

3) The stresses in the element are found from the strains at the current iteration {e!” } and the

irreversible strains at the previous iteration {g/Rtr-% }
{o"} = W {5 - &R Y (3.26)

4) The incremental stresses in the element are calculated by subtracting the stresses from the

previous load step from the stresses at the present load step i
]
{ac{"} = {o{™} = (a{? ) (3.27)
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5) The irreversible strains from the present iteration r are computed using the incremental

stresses {Ac{"}
Lt = {e"‘({AoF’})} (3.28)

6) Finally, the psuedo forces for the r + 1 iteration are calculated from the irreversible strains

at the present iteration r
{FiNL(r+1)} - {FNL({a:R (r)})} (3.29)

If displacement convergence is satisfied, the load is incremented and the process is repeated.
if displacement convergence is not satisfied, the above sequence is repeated in a do-loop until
a convergence criterion on the displacements is satisfied. The constant stress method gets
its name because the sequence of calculations are performed at essentially a constant stress
level. The displacements and thus the strains change during the iteration process until con-
vergence is satisfied. Figure 29 gives a schematic representation of the constant stress

method and Figure 30 shows a flow chart for the method.

3.5.6 The Constant Strain Method

The constant strain method is also an initial strain method and uses the same form of the finite
element equations as the constant stress method. It differs only in the sequence of calcu-
lations required to solve the finite element equations. Whereas the constant stress method
iterations were performed at essentially a constant stress level, the constant strain method
iterations are performed at essentially a constant strain level. The stresses and thus the ap-
plied loads change during the iteration process until a convergence criterion is satisfied.
Whereas the constant stress method consists of one do-loop, the constant strain method

contains two do-loops -- an inner loop and an outer loop. The inner loop iterates at a given
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Figure 29. Force/Displacement Curve for Constant Stress Method
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strain level until a stress convergence criterion is satisfied. The outer loop iterates until a
displacement convergence criterion is satisfied. Once the the outer loop has converged, the

procedure is incremented. The constant strain method is outlined below:

1) For a given load step i and iteration r, convergence is checked comparing the total dis-
placements at the present iteration {U}? } with the total displacements at the previous iteration

{ufrv}.
2) The element strains are computed from the element displacements

{3 = BI{u"} (3.30)

3) The stresses in the element are calculated from the strains of the current iteration {&{"} and

the irreversible strains at the previous iteration {g[f*-"}.
{o"} = W {{" - ENY) (3.31)

4) Convergence is checked comparing the total stresses at the present iteration {o{"} with the

stresses at the previous iteration {o{~"}.

5) The incremental stresses in the element are calculated by subtracting the stresses from the

previous load step from the stresses at the present load step i

{Ac™y = {a{} - (o1} (3.32)

6) The irreversible strains for the present iteration r are computed using the incremental

stresses {Ac{? }

{0y = {s'“({Acf”})} (3.33)
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7) If stress convergence is satisfied, then the solution proceeds. If it is not satisfied, the sol-

ution returns to step 3.

8) The psuedo force array for the r + 1 iteration is calculated from the irreversible strains at

the present iteration r
{FiNL(r+1)} - {FNL({S:R(r)})} (3.34)

If displacement convergence is satisfied, the load is incremented and the process is repeated.
If displacement convergence is not satisfied, the equations are solved for the r + 1 iteration
and the process is repeated. Figure 31 illustrates a schematic representation of the constant

strain method and Figure 32 shows a flow chart.

3.6 Summary

The three-dimensional material nonlinear finite element program AMNISAP contains both the
constant stress and the constant strain methods of solution. The user may choose the desired
method. The reason for incorporating both methods into the program is that the constant
stress method works better for some problems while the constant strain method works better

for others.

The constant stress method has been previously shown to be inherently unstabie under cer-
tain circumstances %, it may suddenly and catastrophically diverge. However, under stable
conditions, it converges rapidly. On the other hand, the constant strain method is inherently
stable, but converges much slower than the constant stress method. It too may diverge, but

does so in a progressive, not catastrophic, manner.
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AMNISAP is a multipurpose program with options to run inversion symmetric or non- inversion
symmetric analysis, and linear material or nonlinear material analysis. Within the nonlinear
material option, the user may choose between two sofution methods -- the constant stress
method or the constant strain method. Finally, the program is written in Fortran 77 so that it

is interchangeable with any computer facility having a Fortran 77 compiler.
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4.0 Laminate Response

4.1 Introduction

This chapter presents an analysis of unnotched and notched angle-ply laminates loaded under
uniaxial compression. In each analysis, analytical and experimental results are compared.
Also, where appropriate, comparison is made between material linear and material non-finear
predictions. The angle-ply laminates considered experimentally are: [( £ 10),,], .
[( £ 20),.], . [( £ 30),,],, and [( % 45);,], . Although these test laminates had 48 plies, they
were modeled in the finite element analysis as having only 4 plies (i.e. [ + 10], , [ + 20],,
[ £ 30], , and [ + 45], ) due to computer storage limitations. The analysis of unnotched
laminates does not include edge effects and gives identical classical lamination theory results
whether 48 plies or 4 plies are modeled. On the other hand, the analysis of laminates with
holes does include edge effects around the hole boundary. These edge effects are dependent
on the laminate stacking sequence. Since 48 ply laminates could not be investigated, it was
decided to investigate four ply laminates which have the same alternating + ¢ sequence as
the 48 ply laminates. It is believed that the overall trends in the 4 ply laminates are similar

to those in the 48 ply laminates. It is also important to note that the hole diameter is not the
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same for all the notched laminates. Table 7 gives the dimensions of the laminates tested.
The dimensions of the finite element models are identical to those in Table 7 except for the

thickness dimension which was 0.01” in all finite element models.

Note that the [( = 10),,], and [( % 20),,], laminates with 1/2” diameter holes have a w/d
(width to diameter) ratio of 5 while the other laminates have a w/d ratio of 10. The w/d ratio
of 5 was used to investigate the influence of the width to diameter ratio on failure. In order
fo differentiate between the unnotched and notched laminates, they are referred to as

[ + ¢], and [ % (9),.],. respectively.

4.2 Unloading Considerations

in the course of performing the finite element analysis, it was observed that the solution would
converge quite rapidly for each load step up to a critical load level; however, at this critical
load level, the solution would diverge rapidly. For some cases, this divergence phenomenon
would occur before the load reached the experimentally observed failure load. Close inves-
tigation into this problem revealed that a component (or possibly many components) of stress
was unloading at the critical load. Because the unloading causes a change in the sign of the
slope (Figure 33) on the component’s stress-strain diagram, the solution algorithm (either
constant stress or constant strain) can not find the correct value of stress. The solution os-
cillates back and forth {with each oscillation growing larger) in an attempt to find the correct

Ac,. Figure 33 shows this phenonomen schematically for the constant strain algorithm.

In Figure 33, the symbols 6C, and o, represent the stress level at the critical load and after the
critical load step, respectively. The letter i represents the iteration number. At the critical

load step, eC represents the strain from the initially applied load, and because the irreversible
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Table 7. Test Specimen Dimensions

# of Hole
Specimens Length Width Thickness Diameter
Layup Tested (in.) (in.) (in.) (in.)
Unnotched Laminates
[ £ 10], 2 10.0 20 0.25 -
[ £ 20], 2 10.0 20 0.25 -
[ + 30], 1 10.0 2.0 0.25 -
[ + 45], 1 10.0 20 0.25 -
Notched Laminates
[t £ 10),,), 2 10.0 25 0.25 0.25
[ £ 10),,], P 10.0 25 0.25 0.50
[ £ 20),,), 2 10.0 2.5 0.25 0.25
[ £ 20),,1, 2 10.0 25 0.25 0.50
[( £ 30),,], 1 10.0 5.0 0.25 0.50
[( £ 45),,], 1 10.0 5.0 0.25 0.50
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strain has not yet been calculated, cC, corresponds to the linear elastic stress. The irre-
versible strain eCR is then calculated from ¢C, (3.29). Psuedo loads are calculated from eC}
(3.30) and the process is repeated until a convergence criterion is satisfied at the fourth iter-
ation. The stress oC, corresponds to the strain ¢éC. At the following load step, the strain ¢ is
calculated from the applied loads and psuedo loads. The stress o, is calculated from the
strain € and £Ci} from the previous load step. The irreversible strain €} is caiculated from
o, but because the stress-strain curve slopes downward below stress level o,, the program
calculates a large indeterminate value for ¢} (imagine the curve continuing with no inflection
point). At the second iteration, e} is used to calculate 6,. The irreversible strain i calculated
from o, is very small. At the third iteration, o, is larger than o, due to the small value of eff}.
The irreversible strain ¢ calculated from o, is larger still than ei? and causes the stress o, at
the fourth iteration to be negative. When the stress becomes negative, divergence proceeds

rapidly as the upwards and downwards arrows depict.

Although it is unknown whether this unloading phenomonen actually occurs in these lami-
nates, the endochronic theory does predict it. Zinov’ev and Sarbaev ' show a similar
occurance for an unspecified fiberglass [ £ 40], laminate loaded in uniaxial tension. Figure
5 in their paper shows the normal stress transverse to the fibers (o,) to be positive initially,
but become negative approximately midway through the loading history. Because Zinov'ev
and Sarbaev used a different formulation of the endochronic equations (i.e. they used multiple
time scales whereas this study only uses a single time scale), it is highly unlikely that this
phenomonen is an error in the formulation of the equations or in the finite element program.
Rather, it appears that it is inherent to the endochronic theory. To prove or disprove whether

the unloading is a real occurrence would require experimental verification.

Because the solution divergence phenomenon sometimes occurs before experimentally ob-
served failure, a condition was imposed in the finite element program which allows the sol-
ution to progress past the critical load level. For the stress components which unload, the

stress increments are set to zero (Ao, = 0) at the present load step and at all future load
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steps. This essentially forces the components’ stress-strain moduli to zero for the remainder
of the loading history. In this manner, the strain components are calculated, but the stress
components are artificially regulated. Of course, imposing this condition is equivalent to
specifying an unknown, which hinders the solution’s accuracy. However, this was found to
be the most effective way to reach higher loading levels. In future sections, this condition is

referred to as the zero-slope condition.

4.3 Experimental Results

Burns et al ' performed experiments on the laminates listed in Table 7. The specimens were
compression loaded quasi-statically in a rigid frame which provided clamped conditions at the
loaded ends and simply supported conditions at the sides. Two specimens of each laminate
configuration were tested except where noted ir‘n Table 7. Further detail of the experimental

procedures is outlined in reference 1.

4.4 Finite Element Analysis

The material non-linear, three-dimensional finite element program AMNISAP was used to
generate all the results. The elements used are 16 node, 3-D isoparametric displacement

based elements. For further details of AMNISAP, refer to Chapter 3.

The finite element grid used to model the unnotched angle-ply laminates is an inversion
symmetric 4 element mesh with one element through the thickness of each ply. This coarse

mesh is not sensitive to edge effects and gives results identical to classical lamination theory.
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The finite element grid used to model the notched angle-ply laminates with 1/2” diameter
holes is an inversion symmetric 744 element mesh; the 1/4” diameter hole laminates were
modeled with an inversion symmetric 792 element mesh. The meshes for the notched lami-
nates have three elements through the thickness of each ply giving a total of six elements

throughout the thickness of the laminates.

The ends of the laminates were loaded with a force distribution that gave each of the end
nodes an approximately equal displacement. The end loading was modeled with end forces

rather than end displacements so that it was not necessary to decompose the stiffness matrix

for each iteration of the solution.

The load step size for each of the laminates was based upon the experimental failure loads.
Twenty load steps were used as a compromise between accuracy and computational effi-
ciency. The load step size for each laminate was determined by multiplying the experimental
failure loads by approximately 1.2 and dividing by 20. The factor of 1.2 was used to allow the
analyses to load past the experimental failure load if the solution proceeded for 20 load steps.
An exception to this was used in analyzing the [ % 457, unnotched faminate. The results for
this laminate exhibited more load step size sensitivity than the other laminates. In order to
best match the experimental global stress-strain results, only 7 load steps were used.
Table 8 shows the number of elements, number of nodal points, number of load steps, far field

stress per load step, and the displacement based convergence criterion magnitude for each

of the laminates analyzed.

The constant stress solution algorithm was used in all of the runs. This algorithm converged
much faster than the constant strain algorithm. For laminates whose solution did not proceed
to the experimentally observed failure load, the constant strain algorithm was used in an effort

to advance the solution further. In all cases, no improvement was observed.
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Table 8. Finite Element Parameters for Angle-Ply Laminates with and without Holes

FFS.* Displacement
Hole # of # of #of per Load Convergence
Layup Size { Elements Nodes Load Steps Step (psi) Criterion

[ £ 10}, - 4 39 20 5760 0.001
[ £ 20], - 4 39 20 2688 0.001
[+ 30], - 4 39 20 1920 0.001
[ £ 45], - 4 39 7 6067 0.001
[ £ 10),,], 1/4” 792 3171 10 4608 0.001
[( £ 20),,], 1/4” 792 3171 13 2688 0.001
[ £ 10),,], 172" 744 2947 12 3840 0.001
[ £ 20),], 172" 744 2947 15 2304 0.001
[{ = 30),], 172" 744 2947 14 1920 0.001
[( = 45),,], 1/2” 744 2947 13 1920 0.001

* F.F.8. - Far Field Stress
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4.5 Unnotched Angle-Ply Laminates

4.5.1 Global Stress-Strain Response

4.5.1.1 Axial Response

Figure 34 shows comparisons of theory and experiment for the axial response of the four
laminates considered. The experimental curves in Figure 34 are the same as those shown
in Figure 18; however, the finite element results are given with smaller load steps in
Figure 34. The curves are included in one figure for ease of comparison. As indicated in the
figure, the comparison between theory and experiment is quite good. The response of the

[ +£10], [ +£20], and [ % 30], laminates is nearly linear to failure whereas the [ + 45],

laminate exhibits significant nonlinearity.

Comparison between theory and experiment is generally good; however, some interesting
phenomena can be noted. Near the point of failure, the [ £ 10], laminate exhibits more axial
softening response than the [ + 20], laminate. This is due in part to the high compressive
stress o, in the [ £ 10], laminate which causes some fiber direction softening. In addition,
the [ = 10], laminate’s response is more dependent upon the fiber direction response. The
fiber direction softening response can be seen in Figure 2 of Chapter 2. Note that at equal
stress levels, the [ £ 20], laminate exhibits more axial softening response than the [ £+ 10],
laminate (Figure 34). The [ % 30], laminate exhibits more nonlinear response than the
[ + 20], laminate because of higher magnitudes of o (14,) and a greater dependence on the
transverse and shear response. Due to an even greater dependency upon the transverse and

shear response, the [ + 45], laminate shows significant axial softening.
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Figure 34. o, Versus €, for Unnotched Laminates -- AS4/3502 Graphite-Epoxy
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4.5.1.2 Transverse Response

As can be seen in Figure 35, the agreement between theory and experiment for the trans-
verse strain response of the four angle-ply laminates is generally good, but not quite as good
as that for the axial response. In general, the predicted transverse strain response is stiffer
than the experimental response for all the laminates. The predicted transverse strain re-
sponse of the [ = 10], laminate falls between the linear elastic and experiment curves. The
[ + 20], laminate’s predicted transverse strain response follows the same trend as that of the
[ £ 10], laminate. The [ + 30], laminate’s experimental transverse strain response shows
significant softening. Unfortunately, the predicted response does not correlate as well with
experiment, falling between the linear transverse strain curve and the experimental curve.
Agreement between theory and experiment is very good for the [ & 45], laminate in which the
most softening occurs. Considering the degree of softening, the correlation between the
predicted transverse strain response and the experimental transverse strain response is ex-

cellent.

4.5.2 Response in Material Principal Coordinates

Examining the predicted stress-strain response in material principal coordinates reveals some
interesting results. The fiber direction response (Figure 36) is intuitively predictable because
e is only a function of 6, (2.11). Therefore, the degree of softening is directly related to the
magnitude of 6,. As Figure 36 shows, the magnitude of o, is largest in the [ £ 10], laminate
and smallest in the [ + 45], laminate. Therefore, the [ £+ 10], laminate exhibits the greatest
fiber direction softening and the [ £ 45], laminate the least. Unlike the fiber direction re-
sponse, the stress-strain response in the other principal material directions is not intuitively
predictable. The non-linear strains in the transverse and shear directions may or may not be

similar to the softening response in pure transverse loading or shear loading, respectively.
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The transverse direction response in these laminates can be compared to the transverse di-
rection response under pure compression loading (see Figure 4 in Chapter 2) and to the linear
elastic response (Figure 37). As shown in Figure 37, the [ + 10],. [ + 20],, and [ + 30],
laminates show transverse direction stiffening response, and the [ £ 45], laminate exhibits
softening response. Note that o, is positive in the laminates which show stiffening response
(L £10],, [ £ 20],, and [ + 30],), but is negative in the laminate which shows softening
response ([ + 45], ). This stiffening response may be due to the endochronic parameters’
inability to model mixed principal coordinate stress states (o4 is negative in all the laminates);
recall that the parameters were developed from uniaxial tests in which all stresses were of the
same sign. Another possible explanation of this behavior is that the predicted stiffening re-
sponse is real and exists within the laminates. However, without experimental results, it is
difficult to prove or disprove this behavior. As a side note, it is possible that the endochronic
parameters’ inability to model mixed stress states caused the predicted global transverse
strain response to be stiffer than experiment (Figure 35) for the [ + 10], ., [ = 20],, and
[ = 30], laminates. Recall that agreement was good for the [ = 45], laminate in which the

principal stress states are of the same sign.

The predicted shear response in these laminates is compared to the pure shear loading re-
sponse (losipescu test), off-axis loading response, and linear elastic response in Figure 38.
All predicted curves show a softening response: however, the degree of softening differs
among the laminates. The [ £ 10], laminate exhibits more shear softening than both the 10°
off-axis and losipescu tests. At a shear stress of 2.7 ksi, the predicted shear strain deviates
-1.4% from linear strain, -5.1% from the 10° off-axis test strain, and -8.7% from the losipescu
test strain. Both the 10° off-axis and losipescu tests show nearly linear response at the low
shear stress level in the [ + 10], laminate (less than 3 ksi). The [ & 20], laminate exhibits
less shear softening than the 15° off-axis test, but slightly more softening than the losipescu
test. Actually, within the [ £ 20], laminate, the predicted response is very nearly linear up

to the maximum level of shear stress (4 ksi). At a shear stress of 3.7 ksi, the predicted shear
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strai'ﬁ deviates -2.1% from linear strain, 5.5% from the 15° off-axis test strain, and -2.1% from
the losipescu test strain. The shear response in the [ + 30], laminate is softer than in the
30° off-axis test, but slightly stiffer than in the losipescu test. However, the difference between
the losipescu test shear response and the predicted shear response is very small. At 7.4 ksi,
the predicted shear strain deviates -11.4% from linear strain, 3.3% from the 30° off-axis test
strain, and -3.0% from the losipescu test strain. The [ + 45], laminate shows more shear

flening 1 n n the losipescu test but not by a iarge degree. The 45° ofi-axis test
does not load to a high enough stress level to make a useful comparison with predicted re-
sults. A useful feature of the [ + 45], laminate is that the shear response can be extracted.
A plot of the shear response within the tested [ + 457], laminate is included in Figure 38.
Comparison between the finite element prediction and the experimental curve reveals excel-
lent agreement. At 12.5 ksi, the predicted shear strain deviates -36.4% from linear strain,
-6.5% from the losipescu test strain, and only 4.4% from the [ £ 45], laminate measured

strain.

The previous comparison shows how dependent the predicted shear response is on the stress
component ratios. This phenomenon is also obvious from the off-axis unidirectional tests.
The ratios of the principal stress components greatly influence the shear stress-strain profile.
However, as noted previously, unlike the off-axis unidirectional tests, the [ + 10],. [ + 20],,
and [ =+ 30], laminates exhibit material principal stress components of opposite signs. Be-
cause the endochronic constants were not derived in this stress environment, the shear re-
sponse for these laminates is questionable. It is encouraging, however, that within the
[ £ 45], laminate (which has principal stresses of the same sign), the experimental shear

response and predicted shear response agree very well.
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4.6 Notched Angle-Ply Laminates

4.6.1 Far-Field Axial Response

Ag menticned previously, the finite element analysis for laminates with holes did not load to
the experimentally observed failure load in all cases. This was true of the [( % 10),,], and
[( + 20),,], laminates with 1/4” diameter holes. However, as Figure 39 shows, far-field axial

stress-strain correlation between theory and experiment for these laminates and for the

[( £ 30),,], and [( % 45),,], laminates is very good.

There are some interesting differences to note between the far-field axial response of the
notched and unnotched laminates. Unlike the response of the unnotched laminates
(Figure 34), the notched [( + 20)12], laminate (Figure 39) shows more axial softening re-
sponse than the notched [( + 10),,], laminate. The cause for this difference is likely due to
the stress concentration around the hole which causes non-linear strains at a lower load level.
Unlike the unnotched [ + 30], laminate (Figure 34), the notched [( + 30),,], laminate with a
1/2” (Figure 39) hole shows very little axial softening response. In fact, the predicted results
show slightly more softening response than the experimental results. The [( + 30),,], lami-
nate’s small degree of softening response is not expected and the cause is unknown. On the
other hand, the [( £ 45),,], laminates with 1/2” holes exhibit significant softening response.
The predicted axial response of the [( + 45),,], laminate correlates extremely well with ex-
perimental results. Due to the degree of softening in this laminate, the excellent correlation

is very encouraging.
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4.6.2 Axial Strain Response Near The Hole

This section focuses on the axial strain at the outer surface of the laminates near the hole
edge. All experiments were conducted with an axial strain gage located as near to the hole

edge as possible. The location of the strain gage is illustrated in Figure 40.

t ool e B e H P Py P S PPIY I P, 7Y
H1 UTuc) w vuinpdare sinne eieiment resSuits wit

h experiment, the far fieid axiai siress is pioited
against the axial strain at 6 = 0°, Z = 11H/12 (the closest gauss plane to the free surface), and
at various distances from the hole edge in Figure 41 through Figure 44. In order to compare

1/4” hole laminates with 1/2” hole laminates, the distance D from the hole edge is normalized

with respect to the radius A.

The finite element stress-strain results agree satisfactorily with experiment between D/A =
0.17 and D/A = 0.36 for the [( £ 10),,], (Figure 41) and [{  20),,], (Figure 42) laminates.
The strain calculated at the gauss point nearest the hole (D/A = 0.0048) is much larger than
the experimentally measured value. At D/A = 0.17440, the predicted response (Figure 41 and
Figure 42) correlates reasonably well with experiment; however, at this D/A, the stress-strain
response is softer than the experimental response. The best correlation for both laminates

appears to occur at 0.17 < D/A < 0.36.

The predicted results for the [( % 20),,], laminate (Figure 42) exhibit an interesting
phenomonen in that the most non-linear stress-strain response occurs not at the gauss point
closest to the hole edge, but at the next gauss point away (D/A = 0.02). In fact, the response
at D/A = 0.0352 is also softer than the response at D/A = 0.0048. The [( %+ 10),,], laminate

does not exhibit this behavior.

The predicted response of the [( % 30),,], laminate (Figure 43) correlates very well with ex-

periment at the first three gauss points nearest the hole (D/A = 0.0044, D/A = 0.02, and D/A
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= 0.0356). Of these three gauss points, the results at the third gauss point (D/A = 0.03520)
appear to agree best with experiment. Similar to the predicted response in the [( £ 20),,],
laminate, the [( % 30),,], laminate’s stress-strain response at D/A = 0.02 is slightly softer
than the response at D/A = 0.0044, but this behavior is not as pronounced in the [( £ 30),,],
laminate. In fact, the curves from the nearest gauss point from the hole (D/A = 0.0044) to the
furthest gauss point from the hole (D/A = 0.1108) all tend to be grouped closer than in the

[( £ 20),,], and [( £ 10),,], laminates.

The response of the [( + 45),,], laminate (Figure 44) correlates reasonably well with exper-
iment. Note that the predicted responses at all six gauss points (from D/A = 0.0044 to D/A
= 0.1108) are nearly identical. The response at D/A = 0.02 and 0.0356 is softer than at D/A

= 0.0044, but this behavior is nearly indistinguishable.

It appears from the above results that the laminates with larger layup angles ¢ show the
non-linear region adjacent to the hole to extend further towards the free edge. The reason the
predicted D/A values are larger in the 1/4” hole laminates than in the 1/2” hole laminates may
be due to their smaller radius value A. At approximately the same distance from the hole

edge, the D/A value of the 1/4” hole laminates is twice that of the 1/2” hole laminates.

4.6.3 Stress-Concentration Profile Ato = 0 °

This section examines stress concentration profiles along 6 = 0° from the hole edge to a dis-
tance D/A = 0.6. Three stress components are examined -- G,, Tq,, and 0,. At the hole edge,
due to free surface boundary conditions, these are the only nonzero stresses. Stress profiles
from linear elastic predictions are compared with those from endochronic theory predictions
in Figure 45 through Figure 51. The linear results were obtained from the first load step of

the solution process, while the nonlinear results correspond to the last load step in the loading
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history. All laminate stresses are normalized with respect to the absolute value of laminate’s

far field stress |G| at the corresponding load step.

4.6.3.1 LA Stress Concentration Profiles

Stress concentration profiles for ¢, at the three gauss planes closest to the mid-plane
(Z=H/12, Z=H/4, Z=5H/12) are shown in Figure 45 through Figure 47 for the four notched
laminates. At all three gauss planes, the [( £ 10),,], laminate exhibits the highest o, stress
concentration and the [ ( & 45),, ], laminate the lowest. Linear elastic analysis predicts a de-
crease in the peak o, stress concentration as the layup angle ¢ increases from 10° to 45°.
The endochronic theory predicts a similar decrease in the peak o, stress concentration as the
layup angle ¢ increases from 10° to 45° at Z=>5H/12, but at Z=H/4 and Z=H/12, it predicts the
peak o, stress concentration to be higher in the [( £ 30),,], laminate than in the [( + 20),,],
laminate. In the [( + 10),,], and [( + 45),,], laminates, as intuitively expected, linear elastic
analysis predicts higher peak o, stress concentrations than the endochronic theory. However,
in the [( % 20),,], and [( * 30),,], laminates, linear elastic analysis predicts lower peak o,
stress concentrations than the endochronic theory, which is not intuitively expected. At the
hole edge, the endochronic theory predicts significantly lower ¢, stress concentrations than
linear elastic analysis at all gauss planes within all of the laminates. Both analyses predict
the peak o, stress concentration to occur in the [( % 10),,], laminate at D/A = 0 and
Z=5H/12. At this point, Figure 47 shows the linear elastic and endochronic theory o, stress
concentrations to be approximately -4.6 and -4.0, respectively. In contrast, the highest peak
o, stress concentration in the [( + 45),,], laminate occurs at D/A = 0.11120 and Z=5H/12 and
has linear elastic and endochronic theory magnitudes of approximately -2.3 and -1.8, respec-
tively. It is especially interesting to note the shape of the g, profiles. With the exception of the
[( = 10),,], laminate, at all gauss planes, the maximum stress concentration occurs not at the

hole edge, but at a small distance inward. This phenomenon is especially pronounced in the
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endochronic theory results. Finally, note that at D/A = 0.6, all laminates at all three gauss
planes exhibit approximately the same o, stress concentration magnitude of -1.5. At larger
D/A values, the o, stress concentration approaches the value -1 because 6, approaches the

magnitude of G,.

4.6.3.2 To, Stress Concentration Profiles

The interlaminar 1, shear stress concentration profiles at gauss planes directly below and
above the ply interface (Z=5H/12, Z=7H/12) are shown in Figure 48 and Figure 49. These
figures show the [( + 30),,], laminate to have the highest 1,, stress concentration and the
[( + 10),,], laminate the lowest. In all laminates, linear elastic analysis predicts significantly
higher peak 1,, stress concentrations than the endochronic theory. This is especially pro-
nounced in the [( + 20),, ], laminate. Other than this difference in peak magnitudes, the linear
elastic and endochronic theory profiles are nearly identical. Note that the boundary layer in

which 1y, exists is very small; 1o, is essentially zero for D/A 2= 0.08 for all laminates.

4.6.3.3 o, Stress Concentration Profiles

The o, out-of-plane normal stress concentration profiles, at gauss planes directly below and
above the ply interface, are shown in Figure 50 and Figure 51. These figures show that linear
elastic and endochronic theory analysis predict nearly identical profiles at points away from
the hole edge. However, near the hole edge, the profiles differ significantly, especially in the
[( £ 20),,], laminate. For the [{ + 20),,], laminate, the endochronic theory predicts the o,
stress concentration to be nearly 0.6 on the hole edge and at Z=7H/12 (Figure 51), compared
to a linear elastic value of approximately zero. This high magnitude of o, may be the result
of the zero-slope condition (see “Unloading Considerations” at the beginning of this chapter)

imposed on another out-of-plane stress component. Note the oscillation about 6, = 0 pre-
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dicted by both analyses. Although the oscillation magnitudes predicted by the endochronic
theory are larger than those of linear elastic analysis near the hole edge, both analyses show
a similar pattern. These oscillations may or may not be real. Often times, displacement

based finite element analysis gives stress oscillations in regions of large strain gradients.

4.6.4 Material Principal Coordinate Stress Profiles Around The Hole

This section examines profiles for all six principal stress components, at the hole edge, for
—90° < 6 < 90°. As in the previous section, the stresses are normalized with the absolute
value of far field stress IEYI. In order to minimize the number of plots, the in-plane stress
component profiles are examined at the mid-plane of the first ply (Z=H/4) and the out-of-plane
stress component profiles are examined at the gauss plane directly below the ply interface

(Z=5H/12). These principal stress profiles can be seen in Figure 52 through Figure 57.

4.6.4.1 Axial Stress o1

Examination of the o, profiles of the four angle-ply laminates (Figure 52) shows the linear and
non-linear profiles to be very similar, except in the [( + 45),,], laminate. The [( + 45),,],
laminate shows a difference between linear elastic and endochronic results, not so much in
the shape of the curve, but in magnitude. The highest o, stress concentration in the
[( £ 45),,], laminate is predicted at the same angle for both analyses, but has a value of -5.0
for linear results and a value of over -7.0 for non-linear results, a difference of 40%. The other
laminates show relatively small differences in stress concentration. However, note that in
both the [( + 10),,], and [( + 45),,], laminates, the endochronic theory predicts the largest
peak stress concentration while in the [( £ 20),,], and [( £ 30),,], laminates, linear elastic

analysis gives the largest peak stress concentration. As is intuitively expected for both linear
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elastic and endochronic theory results, the peak value of g, occurs at approximately —¢ (the

layup angle of each laminate).

4.6.4.2 Transverse Stress o2

Examination of the g, profiles of the four laminates (Figure 53) shows the linear elastic and
endochronic theory profiles to be very similar in the [( £ 10),,], and [{  20),,], laminates
and relatively dissimilar in the [( + 30),,], and [( * 45),,], laminates. Note that the dissimi-
larities tend to occur in a very narrow range of 0 angles. Also, the dissimilarities tend to be
the most pronounced at the largest values of ¢,. The jaggedness in the linear elastic profiles
is probably due to local stress oscillations at the gauss points which, as mentioned earlier,
are common to displacement based finite element analysis in regions of high strain gradients.
The jaggedness in the endochronic theory profiles is likely due to a combination of the afore-
mentioned oscillations and to the zero-slope condition forced upon stress components if they
start to unload in the analysis. Specifying the value of a specific stress component disrupts
equilibrium and causes the other components to shift to re-establish equilibrium. The
endochronic theory o, stress concentration is generally lower than the linear elastic magni-
tude in all of the laminates except for the [( * 30),,], laminate. The [( % 30),,], laminate’s
profiles are very similar except in a region from 6= —30° to =20°. In this region, the
endochronic theory stress concentration increases abruptly, likely caused by the aforemen-
tioned zero-slope imposition on a certain stress component and the need to re-establish

equilibrium.

4.6.4.3 Interlaminar Normal Stress o3

The linear elastic and endochronic theory stress profiles for the o, interlaminar stress

(Figure 54) are very dissimilar for all the laminates except the [( * 10),,], laminate. In this
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laminate, the endochronic theory stress magnitudes are slightly higher than the linear elastic
magnitudes. Note the [( % 10),,], laminate’s nearly anti-symmetric profile about 8 = 0°. The
[(= 20),,], laminate’s linear elastic and endochronic theory profiles agree reasonably well
from 6 = —90° to 6= —20° and from 6=25° to § = 90°. However, between 0= —20° and
0=25° the curves show a significant difference. This difference is mainly caused by a large
jump in magnitude at 6= —5° Again, this jump is likely caused by the need to re-establish
equilibrium due to a zero-slope imposition on another out-of-plane component. The
[( £ 30),.], and [( + 45),,], laminates’ endochronic theory predicted o, stress profiles exhibit
radical jumps and show stress magnitudes much higher than the linear elastic profiles. Note
that in all the laminates, except for the jumps in the endochronic theory profiles, the o, stress

concentration is relatively low, the absolute value not exceeding approximately 0.1.

4.6.4.4 Interlaminar Shear Stress o4

The linear elastic and endochronic theory stress concentration profiles for the o, (1,,)
interlaminar shear stress (Figﬁre 55) are similar in all of the laminates except for the
[( £ 20),,], laminate where the profiles show a significant difference in magnitude. In this
laminate, the largest endochronic theory stress concentration is nearly 6 times greater than
the largest linear stress concentration. The [( + 10),,], laminate shows the endochronic
theory positive stress magnitude to be larger and the negative magnitude to be smaller than
the linear elastic stress magnitude. The [( £ 30),,], laminate’s endochronic theory peak
stress magnitude is larger than the linear elastic peak magnitude. In contrast, the
[( £ 45),,], laminate’s endochronic theory predicted stress profile exhibits smaller magni-
tudes than linear elastic analysis. The largest predicted stress concentration occurs in the
[( + 45)12], laminate at approximately -20°. Linear elastic analysis predicts a value of nearly
-0.7 while endochronic theory analysis predicts a value near -0.5. The [( £ 30),,], laminate

exhibits magnitudes nearly as high. These large magnitudes of g, stress concentration show
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the potential for delamination. The magnitudes in the [( + 20),,], and [( % 30),,], laminates

are not nearly as high.

4.6.4.5 Interlaminar Shear Stress os

The linear elastic and endochronic theory oy (1,;) stress concentration profiles (Figure 56)
agree reasonably well for all the laminates except the [( £ 20),, ], laminate (similar to the o,
profiles). This laminate shows odd behavior in that the endochronic theory stress concen-
tration is opposite in sign to the linear elastic stress concentration, except in the region from

= —25° to 0=25°. In this region, the profiles are of the same sign, but the endochronic
theory stress magnitude is much larger than the linear elastic magnitude. In the [( £ 10).]..
L( £ 30),,],. and [( % 45),,], laminates, the endochronic theory stress magnitudes are gener-

ally lower than the linear elastic magnitudes. Again, the largest discrepancies occur near the

stress concentration peaks.

4.6.4.6 Inplane Shear Stress ocs

The o (1) linear elastic and endochronic theory stress concentration profiles (Figure 57) are
similar for all the laminates. In general, they show the endochronic theory stress magnitudes
to be smaller than the linear elastic magnitudes. Differences are most pronounced at the
profile peaks. Not only are the linear elastic and endochronic theory stress profiles similar,
but the profiles for ail laminates are very similar in shape, especially in the [( = 10),,], ,

[( £ 20),,],, and [( £+ 30),,], laminates.
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4.6.5 Cylindrical Coordinate Stress Profiles Around The Hole

This section examines cylindrical coordinate stress profiles at the hole edge from
—90° < 0 < 90°. The in-plane normal stress, O, is plotted at the mid-plane of the first ply
(Z=H/4) in Figure 58, and the interlaminar shear stress, Te IS plotted at the gauss plane be-

low the ply interface (Z=5H/12) in Figure 59.

4.6.5.1 Circumferential Stress O,

Examination of the o, stress profiles (Figure 58) around the hole shows the linear elastic and
endochronic theory profiles to be very similar except in the [(= 45),,], laminate. The
[(+ 45),, ], laminate shows the endochronic theory stress magnitude to be significantly higher
from 9=30° to 6=50°, while from 8= —25° to §=30°, the linear elastic stress magnitude is
higher. The [( % 10),, ], laminate also shows the endochronic theory peak stress magnitude
to be higher than the linear peak magnitude by a small amount. However, at all other values
of 0, the endochronic theory stress magnitude is lower than that predicted by linear theory.
In both the [{ % 20),,], and [{ % 30),,], laminates, the endochronic theory stress magnitude
is lower than the linear elastic magnitude for all values of 8. Note how similar the O, stress
profiles are to the g, profiles in the previous section. This most likely occurs because o, is the
largest stress component magnitude in all of the laminates and is the dominant term in the

transformation from principal coordinates to cylindrical coordinates.

4.6.5.2 Interlaminar Shear Stress To,

The 1, stress profiles (Figure 59) show the maximum value of 14, to occur at §=0° for all of

the laminates. In fact, all of the linear elastic stress profiles have very similar shapes. As ¢
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(the layup angle of the laminates) increases, the  bandwidth of high 1,, stresses around the
hole widens. In fact, the [( + 45),,], laminate shows a nearly constant peak value of T, from
6= —25°0 0=25°. On the other hand, the peak value of 1, occurs in a very limited region
around 9 = 0° in the [( % 10),,], laminate. The endochronic theory stress magnitudes are
smaller than the linear elastic magnitudes for nearly all values of 0 in all of the laminates.
Only in the [( % 10),,], laminate is the endochronic theory stress magnitude larger than the
linear elastic magnitude from 8= 15° to 6= 45°. The reduction in the peak stress concentration

due to endochronic theory analysis is as great as 30% in the [( % 45),,], laminate.

4.7 Summary

The overall stress-strain correlation between endochronic theory finite element analysis and
experiment is very good. The endochronic theory was shown to predict axial and transverse
response more accurately than linear elastic analysis in all of the laminates, especially for the
[ + 45], and [( = 45),,], laminates. However, the predicted transverse response was not as
good as the predicted axial response in the [ + 10],, [ = 20], , and [ * 30], unnotched
laminates (where o, and o, are of opposite sign). A possible cause for the less accurate

correlation in these laminates is that the endochronic parameters are unable to accurately

model mixed stress states.

In spite of the generally good correlation, the endochronic theory finite element analysis is
limited by numerical problems. The endochronic constitutive equations predict unloading of
certain stress components in the angle-ply laminates at some point during their load history.
This, coupled with the constant stress and constant strain algorithms which will not converge

near unloading points, limits the utility of the finite element program AMNISAP. The unloading
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problem is circumvented somewhat by the zero-slope condition. However, this is only a

"patch-up” solution and results generated after unloading occurs are questionable.

The comparison between stresses from linear elastic and endochronic iheory analyses
reveals some interesting results. In general, the stress concentrations from endochronic
theory analysis are smaller than those from linear elastic analysis. However, at various lo-
cations, the endochronic theory predicts stress magnitudes greater than linear elastic analy-
sis. The endochronic theory stress profiles are generally more jagged than the linear elastic
profiles, sometimes jumping to extreme magnitudes. An explanation for this unexpected
phenomonen is that another stress component at the same location unloaded and the zero-

slope condition was imposed. To re-establish equilibrium, the observed stress component

shifted to a higher than expected value.
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5.0 Failure

5.1 Introduction

In a previous analysis of compression loaded angle-ply laminates with central holes, Burns
et al ' found ultimate failure load predictions to be very conservative in comparison to exper-
imental results. However, Burns et al prediction’s of the mode and location of failure were
quite good. In the present study, the main reason for using a nonlinear constitutive relation-
ship was to asses the effect of nonlinear material response on the prediction of the failure
load. It was reasoned that linear elastic analysis predicts stresses around the hole to be much
higher than they are in real laminates. Inclusion of nonlinear material response in the anal-

ysis should result in more accurate (and lower) stress levels in the region of stress concen-

tration around the hole.

Another possible explanation for the conservative predictions of failure using the finite ele-
ment model is that the idealized model predicts a stress state near the hole which is much
higher than the true stress state. This is because the finite element model treats the ply

interface as being discrete -- the material properties change discontinuously across the
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interface. Of course, this mathematical discontinuity is not present in actual laminates;
therefore, the stresses predicted by the model may be significantly higher than those in real

laminates 4.

This chapter presents a failure analysis of both unnotched and notched laminates based upon
a nonlinear stress analysis and the tensor polynomial failure criterion. The stress results
generated by AMNISAP were used in a post-processing program which employs the tensor
polynomial failure criterion to predict the far field load, location (for laminates with holes), and
mode of failure. The tensor polynomial was chosen as the failure criterion because it ac-
counts for stress interaction, which may be especially important in the complex, three-
dimensional stress field around the hole. Results of the failure analysis based upon linear

and nonlinear material response are compared to experimental results.

Application of the tensor polynomial {(a point-wise failure criterion) at points around the hole
edge gives a prediction of the initial (first) failure event in the laminate. Often, this does not
correspond to the ultimate load carrying capacity in real laminates. Damage, in the form of
micro-cracks, usually forms in the highly stressed region of the hole edge prior to final frac-
ture. One approach for the application of a point-wise failure criterion to notched laminates
is to base failure on the stress state at a small distance d, from the edge of the hole. The
distance d, from the hole edge has been called a characteristic distance* , meaning that for
a given material it does not change with the layup of the material. This chapter examines the
tensor polynomial failure predictions at various radii around the hole to assess the correlation

of theory and experiment.

The final objective of this chapter is to examine the effect of the w/d (width over hole diameter)
ratio on failure. Results from linear elastic analysis are compared with those from inelastic

analysis.
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5.2 The Tensor Polynomial

The stress tensor polynomial can be written

Fio'l + F”Gioj <1 (l = 1,2,.....8)

where the stress components in material principal coordinates (o)) have been expressed in

reduced notation. The F; and F; are second order and fourth order strength tensors, respec-

tively, determined from tests on unidirectional laminae. Determining the normal stress inter-

action constants F,,, F,;, and F,, requires difficult to perform biaxial tests. Fortunately, these

constants have been previously shown to have little influence on the failure predictions. In

this study, F,,, F;, and F,, are set to zero. The required components of the strength tensors

are determined as follows:

- _1 1 P
Fi -o_lv + ? (l = 1,2,3)
-1 .
Fi = ————— (i = 1,2,3,no sum)
() (o}")
Fi = —JW (i = 4,5,6, no sum)
(0;)

FF=10 (i=456)

Fy =0 (i#])
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5.21 Strength Parameters for AS4/3502 Graphite-Epoxy

The AS4/3502 strength data used for failure prediction (Table 9) are the same as those used
in Burns et al . The constants o} and ot (i=1,2,3) represent the principal material direction
normal strengths in compression and tension, respectively. The constants ot (i=4,56) rep-
resent the principal material direction shear strengths. Since the time of Burns’ work, im-
proved test methods have shown the oi* and o§" shear strengths to be considerably higher
than those used by Burns et al. The 1-2 plane [0] losipescu test used to determine
endochronic constants in Chapter 2 (Figure 7) failed at a shear stress of 13.5 ksi; however,
failure did not initiate in the shear region and the failure mode was transverse tension, not
pure shear. Therefore, the true shear strength of AS4/3502 is believed to be higher than 13.5
ksi. Walrath and Adams + observed shear strengths of 15.5 ksi for AS4/3501-6 (a material very
similar to AS4/3502) using the losipescu shear tests. Considering the above, the 1-2 and 1-3
plane shear strength (c* and o, respectively) used in this study is 14 ksi. Both Burns et al
value of 9.4 ksi and this new value of 14 ksi are considered in the failure analysis of notched

and unnotched laminates and comparisons are made.

5.3 Unnotched Laminates

Failure analysis of the unnotched laminates presented few difficulties. Because the two-
dimensional stress state (edge effects were not considered) is constant throughout the in-
plane and thickness dimensions, ultimate fracture was assumed to occur when failure was
first predicted by the tensor polynomial. Comparisons of failure based upon linear elastic
stress analysis and nonlinear stress analysis are shown in Table 10 where the axial failure

stress and failure strain are given as o}" and e/, respectively.
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Table 9. Lamina Strengths for AS4/3502 Graphite Epoxy

Failure

Strength Property (ksi)
oy 200.0
oy -122.0
o 7.0
oy -35.0
oy 7.0
oy -35.0
oyt 8.0
o 9.4
oyt 9.4
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As can be seen in Table 10, both linear theory and endochronic theory failure predictions for
the unnotched angle-ply laminates were quite good. Since the tensor polynomial is based on
stress, the endochronic theory and linear theory predictions of failure stress are nearly iden-
tical. However, the failure strains predicted by the two theories differ considerably -- the
endochronic theory failure strains correlate with experiment significantly better than the linear

theory failure strains.

As shown in Table 10, a shear strength of 9.4 ksi gives conservative failure predictions (both
oy and &) for all of the laminates, except the [ + 20], laminate. A shear strength of 14 ksi
also gives conservative failure predictions except for the [ + 20], laminate and oyt of the
[ + 45], laminate; however, the failure predictions are considerably more accurate (except
for the [ £ 20], laminate). Using the 14 ksi shear strength, the predicted oy* stresses and
ey" strains are within 6% of experimental values for the [ + 10], and [ + 30], laminates. The
endochronic theory predicted oy and eyt are within 12% and 40% of experiment, respectively,
for the [ + 45], laminate. The gy strain is a significant improvement over that predicted using
9.4 ksi as the shear strength. The tested [ + 45], laminate did not fail at the stress and strain
levels given in Table 10 -- the amount of axial deformation required to cause final fracture of
this specimen was larger than the travel permitted by the loading frame. The oy* and gy val-

ues presented are the maximum values attained during the test.

The reason for the [ + 20], laminate’s poor correlation between theory and experiment is not
understood. It is possible that the test specimens contained flaws which caused them to fail
early. However, this is unlikely because both specimens failed at nearly identical loads. An-
other possibility is that the [ & 20], laminate failed due to interlaminar stresses which were
not modeled in the stress analysis. If this is true, the [ £ 20], laminate’s failure mode is ex-
clusive from the failure modes of the other angle-ply laminates since failure predictions are

satisfactory for them.
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Table 10. Comparison of Failure Predictions with Experiment for Unnotched Laminates

Laminate [£10], [+20], [£30], [+ 45],
o-ult eult o—ult sult o-ult sult o-un Sult
(ksi) (%) (ksi) (%) (ks) | (%) (ksi) (%)
o—glt: oglt
= 9.4 ksi
Linear -92.658 [-0.5153 |-48.503 {-0.3679 |-27.538 |-0.3725 |-19.058 |-0.6531
Theory
Endochronic| -92.880 |-0.5461 |-48.716 |-0.3784 |-27.363 |-0.3808 |-19.127 |-0.7856
Theory
0glt= o-ts.ilt
= 14 ksi
Linear -95.504 |-0.5310 |-54.183 |-0.4109 |-34.594 [-0.4680 |-30.272 |-1.0374
Theory
Endochronid -95.031 [-0.5598 |-53.626 |[-0.4184 |[-33.362 {-0.4759 |-30.205 |[-1.9361
Theory
Experiment’| -96.985 |-0.5683 |-42.490 |-0.3306 |-34.340 {-0.5028 |-26.760 |-1.5910
Range 10.630 | 0.0668 2.540 0.0232 1 test 1 test 1 test 1 test
(ksi) (%) (ksi) (%)
* Note:

Experimental values are averaged.

Range indicates the largest difference between experimental values.
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5.4 Notched Laminates

Predicting the final fracture load of laminates containing notches is difficult because regions
near the notch generally fail before the laminate as a whole fails. This local failure may or
may not be observable. Micro-cracking is usually difficult to observe whereas shear crippling,
fiber breakage and delamination are much easier to detect. The angle-ply laminates in this
study displayed no signs of observable (x-ray) damage prior to ultimate failure (with the ex-
ception of the [( & 45),,], laminate with a 1/2” hole). Another difficulty in predicting final
fracture is obtaining an accurate stress state around the hole. As mentioned earlier, the finite
element mesh models ply interfaces as being discrete. Therefore, the finite element analysis

may give stresses that are too high.

Despite these difficulties, predicting the fracture load is only part of understanding the failure
process of the notched angle-ply laminates. Predicting the mode of failure and the location
at which failure initiates are important as well. Discussions of fracture, the mode, and the

location of failure initiation are presented in the following two sections.

5.41 Fracture

Theory and experiment are compared for laminates with w/d ratios of 10 in Table 11, where
oy and el represent the far-field axial stress and strain at the fracture load. The fracture load
is equivalent to the load at which the tensor polynomial predicts failure at the hole edge. As
mentioned previously, because local failure at the hole edge does not necessarily correspond
to fracture and because the finite element stresses may be too high, the theoretical oy and
eyt values in Table 11 are very conservative. A shear strength of 14 ksi gives slightly less

conservative failure predictions than the 9.4 ksi shear strength; however, the improvement is
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not as pronounced as with the unnotched laminates. The higher value of shear strength im-
proves the [( % 45),,], laminates o¥* stress most, bringing it to within approximately 50% of

the experimental oy" stress.

Similar to the analysis of unnotched laminates, the linear theory and endochronic theory oy*
stresses in Table 11 are nearly identical for all of the laminates. As mentioned previously,
because the tensor polynomial is a stress based failure criterion and because the stresses
are relatively proportional, this is expected. However, unlike the unnotched laminate analysis,
the linear theory and endochronic theory ey" strains are also nearly identical. The reason the
gy" strains are so similar is that at the low predicted values of oy", the laminates have not been
loaded significantly into their softening regions. If the theoretical oy" stresses were close to
the experimental oy" stresses, the linear theory and endochronic theory " strains would differ

significantly, the endochronic strains being the more accurate.

From Table 11, it appears that the problems of applying the tensor polynomial at the hole
edge and finite element stresses that are possibly too high have caused the theoretical oy*
failure stresses to be very conservative. Because of the low oi* stresses, the endochronic
theory was not able to show an advantage over linear elastic analysis in predicting failure
stresses oy" and failure strains ey . The results from Chapter 4 clearly show that with more
accurate values of oy stresses, the endochronic theory would give more accurate predictions

of gy strains than linear theory.

5.4.2 Failure Mode and Location

The failure mode and location as predicted by linear and endochronic stress analyses agree
quite well with experiment. Table 12 and Table 13 list the predicted location, fracture stress

oy" and strain ey, and the tensor polynomial terms at failure for the four angle-ply laminates
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Table 11. Notched Laminate Comparison of Failure Predictions with Experiment

Laminate

[(£10),,], [(&20),,], ((£30),,], [(£45),,],
o-ul( su't o-ult Eul! o-ult eult o-ult 8““
(ksi) (%) (ksiy | (%) (ksi) (%) (ksi) (%)
o-glt = O-glt
= 9.4 ksi
Linear -10.696 |-0.0596 |-7.956 -0.0605 |-7.208 -0.0973 |-7.952 -0.2722
Theory .
Endochronid -10.640 |-0.0592 |-7.969 -0.0606 |-7.222 -0.0875 |-7.871 -0.2688
Theory
o-lsllt = o-glt
= 14 ksi
Linear -14.603 |-0.0812 [-11.072 |-0.0841 |-9.570 -0.1292 {-11.437 {-0.3906
Theory
Endochronid -14.929 |-0.0833 |-11.223 -0.0855 |-9.732 -0.1315 |-12.195 |-0.4238
Theory
Experiment’| -76.255 |-0.4054 |[-45.010 |-0.3550 {-26.323 -0.3521 [-25.227 |-1.4387
Range 1.350 0.0161 0.420 0.0057 1.510 0.0289 4.28 0.3774
(ksi) (%) (ksi) (%) (ksi) (%) (ksi) (%)
* Note:

Experimental values are averaged.

Range indicates the largest difference between experimental values.
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using the two material models. Figure 60 through Figure 63 show the tensor polynomial
profile around the hole edge for both linear and endochronic stress analyses. Note that the
endochronic theory gives a profile nearly identical to the linear elastic profile. In the sections

that follow, theory and experiment are compared.

5.4.2.1 10 ° Angle-Ply Laminate With A 1/4” Hole

The [( % 10),, ], laminate failed in two modes, one a compressive failure across the horizontal
axis of symmetry, and the other a fracture at 10 ° from the loading axis !. Both of these failures
initiated at 6 = 0°. As shown in Table 12, both linear and endochronic theory analysis predict
failure to occur at the first gauss plane above the ply interface (Z=7H/12) and at an angle of
0.0 ° from the x-axis. The largest term in the tensor polynomial is the out-of-plane shear term
Fsst3e, Which has a value of 0.51 for both types of analysis. This term, along with the relatively
high in-plane shear term of Fgt?, = 0.21 likely represents the shear crippling type failure ob-
served in the test specimen. The compressive failure mode is harder to explain. The F,c, and
F110% terms are relatively small; however, the value of their sum is significant, being approxi-
mately 0.26. Both terms represent compressive failure, so their sum is the important value.
Although this value is not as large as the Fg1%, term, it is the next largest value and thus re-
presents compressive failure as a second possible failure mode. Note that the linear elastic
and endochronic theory tensor polynomial terms are nearly identical. Apparently, the stress
states predicted at failure are very similar for both analyses. Using a shear strength of 14 ksi,
Table 12 shows the endochronic prediction for failure location to be the same as the elastic
prediction; however, the tensor polynomial terms are different from those using using a shear
strength of 8.4 ksi. The compressive failure mode terms (F,o, and F,,02) are higher, while the
shear mode terms (Fyti; and Fy13,) are lower. In fact, the sum of F,o, and F,,0% is approxi-

mately equal to Fg1%;, both values being roughly 0.40. This is consistent with both failure
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Table 12.

Tensor Polynomial Terms for Laminates with 1/4” Holes

[(£10),,], [(£20),,],

oyt = ot Linear Endochronic Linear Endochronic

= 9.4 ksi Theory Theory Theory Theory
Z 7H/12 7H/12 7H/12 7H/12
0 00° 00° 25° -25°
cy{psi) | -10,898 -10,840 -7,958 -7,969
£9Y %) -.0596 -.0582 -.0605 -.0606
F,o, 0.1583 0.1579 0.0801 0.0799
F,,03% 0.1005 0.1000 0.0257 0.0256
F.o, 0.0008 0.0006 0.0362 0.0358
F,,03% 0.0000 0.0000 0.0004 0.0004
F,0, -0.0096 -0.0098 0.0178 0.0173
F;,0% 0.0000 0.0000 0.0001 0.0001
Futs 0.0195 0.0197 0.0822 0.0819
Fest2s 0.5174 0.5187 0.5582 0.5525
Fest2, 0.2130 0.2111 0.1993 0.1965

o§"t = og* | Linear Endochronic Linear Endochronic

= 14 ksi | Theory Theory Theory Theory

4 7H/12 7H/12 7H/12 7H/12
6 00° 00° 25° -25°
oy(psi) | -14,603 -14,929 -11,072 -11,223
ed( %) -.0812 -.0833 -.0841 -.0855
F.o, 0.2173 0.2186 0.1113 0.1119
F,0% 0.1893 0.1917 0.0497 0.0502
F.0, 0.0012 0.0015 0.0503 0.0532
F,.0% 0.0000 0.0000 0.0008 0.0009
Fq0, -0.0131 -0.0129 0.0247 0.0279
F4,0% 0.0001 0.0001 0.0002 0.0002
FauT?: 0.0368 0.0380 0.1587 0.1614
Fest3s 0.4027 0.3993 0.4453 0.4384
FesT? 0.1658 0.1604 0.1590 0.1529
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Table 13.

Tensor Polynomial Terms for Laminates with 1/2” Holes

[(£30),,], [(+45),,],
oyt = ot Linear Endochronic Linear Endochronic
= 9.4 ksi | Theory Theory Theory Theory

Y4 7H/12 7H/12 5H/12 5H/12
6 -50° -5.0° -175° -17.5°
oy(psi) | -7,208 -7,222 -7,952 -7,871
ey"(%) -.0973 -.0975 -.2722 -.2688
F.o, 0.0634 0.0631 0.0743 0.0741
F,0% 0.0161 0.0160 0.0221 0.0220
F,0, 0.0552 0.0557 -0.2451 -0.2414
F,,03% 0.0010 0.0010 0.0188 0.0182
Fy0, 0.0515 0.0516 0.0534 0.0570
F;;03 0.0008 0.0008 0.0009 0.0010
Futd 0.1494 0.1487 0.0906 0.0898
Fssts 0.4154 0.4114 0.2648 0.2670
FesT?, 0.2472 0.2429 0.7202 0.7135

ot = gyt Linear Endochronic Linear Endochronic

= 14 ksi | Theory Theory Theory Theory

4 7H/12 5H/12 7H/12 7H/12
0 -5.0° -25° 25° 15.0 °
oy(psi) | -9,570 -9,732 -11,437 -12,185
ey %) -.1292 -.1315 -.3906 -.4239
F,0, 0.0840 0.0663 0.0505 0.0265
F,,0% 0.0283 0.0176 0.0102 0.0028
F,o, 0.0731 0.0516 -0.5591 -0.6354
F,,0% 0.0017 0.0008 0.0977 0.1262
F,0, 0.0683 0.0608 0.0779 0.0785
F350% 0.0015 0.0012 0.0019 0.0019
Faiths 0.2623 0.3954 0.6390 0.9066
Fsstis 0.3015 0.2470 0.1295 0.0551
Fest2, 0.1794 0.1637 0.5524 0.4297
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modes being present in the test specimen. This result also lends support for using the higher

value of shear strength.

Figure 60 shows that not only are the linear elastic and endochronic theory stress states
nearly identical at the point of failure, but around the profile of the hole as well. The
endochronic theory results, represented by a dashed line, are nearly indistinguishable from
the linear elastic results. The shape of the tensor polynomial profile is very interesting. The
majority of the profile lies under the value of 0.5. At = 0°, there is a very sharp peak where
the tensor polynomial reaches 1.0. Note also that the profile is nearly symmetric about
8 = 0°. This is because of the relatively small fiber angle of 10 °. As the other figures show,

the near symmetry about 6 = 0° is less pronounced for larger fiber angles.

5.4.2.2 20 ° Angle-Ply Laminate With A 1/4” Hole

The [( + 20)1,], laminate failed due to a fracture at 20 ° from the loading axis 1. Like the
[(+ 10),.]. laminate, this fracture was parallel to the fiber direction in half of the plies and
fractured fibers in the alternate plies. Failure initiated at & = 0°. Table 12 shows that both
linear elastic and endochronic theory analysis predict failure to initiate in the first gauss plane
above the ply interface (Z=7H/12) and at § = —2.5° . The dominant tensor polynomial term
is again the out-of-plane shear term Fg12, with a value of approximately 0.55. The next largest
term is the in-plane shear component Fg,12, with a value of approximately 0.20. Together,
these two terms have a sum of 0.75, which represents a shear failure as being the dominant
failure mode. Using a shear strength of 14 ksi, Table 12 shows a slight redistribution in the
values of the tensor polynomial terms that lessens the dominant effect of the Fest3, and Fggtd,
terms and increases the values of the F,0,, F,,02, and F,1% terms. However, the Fgst3; term is
still the largest term at a value of approximately 0.44. As with the [(+ 10)12], laminate anal-

ysis, the tensor polynomial terms are nearly identical for both linear and endochronic theory

analysis.
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Figure 61 shows the tensor polynomial profile around the hole of the [( £ 20),,], laminate to
be nearly identical to the profile of the [( £+ 10),,], laminate. The peak value occurs at
§ = —2.5° and the peak is not quite as sharp as in the [( + 10), ], laminate. Also, the near

symmetry noted in Figure 60 is somewhat more skewed in Figure 61.

5.4.2.3 30 ° Angle-Ply Laminate With A 1/2” Hole

The [( £ 30),,], laminate failed due to a fracture at 30 ° from the loading axis '. As in the
[( £ 10),,], and [(  20),,], laminates, this fracture was paraliel to the fiber direction in half
of the plies and fractured fibers in the alternate plies. Failure appears to have initiated at
0=0°, although the failure band was fairly wide, thus it is difficult to pinpoint the exact location
at which failure begins (see Figure 2.25 in Burns et al ). Using a shear strength of 9.4 ksi,
Table 12 shows that both linear theory and endochronic theory analyses predict failure to in-
itiate in the gauss plane above the ply interface and at § = —5.0°. This location is reasonably
close to that observed in the test specimen. Like the [( % 20),,], laminate, the dominant
tensor polynomial term is Fg12, with a value of 0.41. The second and third largest terms are
Fest2. and F 1%, respectively. The sum of these shear terms is greater than 0.8, which shows
that shear failure should be dominant. Note that all of the tensor polynomial terms agree quite
well between linear elastic and endochronic theory analysis. Using a shear strength of 14
ksi, Table 13 shows a difference in the location of failure for the two types of analysis. Linear
analysis predicts failure to occur at the same point (Z=7H/12, 6=-5.0 °), whereas the
endochronic theory predicts failure to occur at the gauss plane directly below the ply interface
(Z=5H/12) at an angle of 6 = —2.5°. The endochronic theory predicts the failure location
more accurately than linear elastic analysis when the shear strength is set to 14 ksi. Note that
the tensor polynomial terms differ fairly significantly between the two analyses and have
shifted from the values using a shear strength of 9.4 ksi. Linear analysis still shows the

Fss12; term to be dominant, but to a lessor degree. However, the endochronic theory shows
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the F 1%, term to be dominant. In both analyses, the sum of the tensor polynomial shear terms
using shear strengths of 14 ksi and 9.4 ksi are nearly the same; however, the individual terms

are redistributed.

Figure 62 shows the tensor polynomial profile around the hole to be very similar to the pro-
files of the [( % 10),,], and [( £ 20),,], laminates shown in Figure 60 and Figure 61, respec-
tively. The peak has a much smoother profile and the bandwidth of points above 0.5 has

increased. The near symmetry shape is still present, but more skewed.

5.4.2.4 45 ° Angle-Ply Laminate With A 1/2” Hole

Like the [ & 45], unnotched laminate, the [( & 45),,], laminates with 1/2” holes were not
tested to failure due to the limited travel of the testing machine. However, these laminates
did show damage in the form of bands of matrix damage, visible under ultrasonic C-scan,
which formed at + 45° to the loading axis . It is nearly impossible to observe the precise
location of failure initiation from the C-scan, although the damage bands seem to initiate at
0= £ 15°. Using a shear strength of 9.4 ksi, Table 13 shows both linear elastic and
endochronic theory analysis to predict the failure location at the gauss plane directly below
the ply interface (Z=5H/12) and at © = 17.5°, which agrees reasonably with experiment. The
out-of-plane shear terms (F, 13, and Fgt3) are much less dominant in this laminate. Instead,
the in-plane shear term Fg1%, dominants with a value of approximately 0.72. Part of the reason
this value is so high is that the F,0, term is negative, which allows the other terms to be larger.
Shear failure is the obvious failure mechanism predicted by both analyses. Again, the tensor
polynomial terms are nearly identical for both analyses. Using a shear strength of 14 ksi,
Table 13 shows a large discrepancy in the predicted location of failure between linear elastic
and endochronic theory analysis. Both analyses predict failure to occur in the gauss plane
directly above the ply interface (Z=7H/12). However, linear analysis predicts the angle of

failure initiation to be 2.5° whereas endochronic theory analysis predicts 0 = 15.0°. The
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endochronic analysis predicts the correct location more accurately than linear elastic analy-
sis. Also, the tensor polynomial terms differ significantly between the two analyses. In both
analyses, the dominant term has shifted from Fg13, to F,,1%,. However, this shift is most pro-
nounced for the endochronic theory. Note also that the F,0, term using a shear strength of

14 ksi is almost three times larger than the F,0, term using a shear strength of 9.4 ksi.

The shape of the [( % 45),,], laminate’s tensor polynomial profile is, again, very similar to the
previously discussed laminates, as can be seen in Figure 63. The profile is anti-symmetric
to the previous laminate’s profiles because failure is predicted at Z=5H/12 instead of
Z=T7H/12. The bandwidth of points with magnitudes above 0.5 has increased, and the near
symmetrical shape is much more skewed. As with the previously discussed laminates, the

endochronic theory profile is nearly indistinguishable from the linear elastic profile.

5.4.3 Failure Away From The Hole Edge

Whitney and Nuismer # applied the characteristic distance theory by evaluating a given failure
criterion at a set distance d, from the hole edge along the horizontal centerline of the speci-
men (0 = 0° here). Burns ' also used this approach in his work and found the distance d, to
be dependent on both hole diameter and laminate ply orientation. In other words, the distance

d, was not found to be “characteristic”.

Instead of examining the state of stress at various distances from the hole along 6 = Q°, this
study applies the tensor polynomial at various radii (or distances from the hole edge) for
—90° < 6 < 90°. Figure 64 and Figure 65 show the fracture stress oyt as a function of
distance from the hole edge for the four notched laminates with a w/d ratio of 10. Figure 64

shows the profiles from linear elastic analysis and Figure 65 shows the endochronic theory
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profiles. Table 14 lists the failure locations for the same four laminates as a function of dis-

tance from the hole edge.

Figure 64 and Figure 65 show the failure profiles from linear elastic analysis and endochronic
theory analysis to be nearly the same. Note that the [( + 30),,], and [( + 45),,], laminates
both have a local maximum at D/A = 0.0045. In other words, the predicted failure stress is
lower at D/A = 0.02 than at 0.0045. In fact, for the [( £ 45),,], laminate, this local maximum
is the absolute maximum for the data shown. The [( + 45),,], laminate’s profile appears to
have nearly a O ° siope after the point D/A = 0.02. These figures show that very large D/A

values are required to predict the experimentally measured strengths.

As D/A increases, the location of failure also changes as shown in Table 14. Both linear
elastic and endochronic theory analysis predict the same failure location in all of the lami-
nates except for the [( % 45),,], laminate. However, the discrepancy in this case is small and
only occurs at D/A = 0.02 and D/A = 0.0355. Note that the through-the-thickness Z location
varies widely, especially for the [( + 10),,], and [( £ 20),,], laminates. The 9 locations tend
to vary less than the Z locations with the exception of the [( £+ 10),,], laminate, where it jumps
to nearly 90° at D/A = 0.08. In examining this table, keep in mind that the through-the-
thickness location Z and the angle 8 are not entirely separate. A point located at a given 6
and Z = 7H/12 has nearly the same stress state as a point located at —0 and Z = 5H/12.
For example, in the [( + 30),,], laminate, failure is predicted to occur at D/A = 0.0045, Z =
7H/42 and 6 = —3.75°. At D/A = 0.02, failure is predicted at Z = 5H/12 and 0 = 3.75° . Al-

though these points are different, the failure mechanism and mode are likely the same.
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Tabie 14. Location of Failure at Various Distances from the Hole Edge

[(£10),,], [(£20),,],
Linear Endochronic Linear Endochronic
Theory Theory Theory Theory
D/A Y4 0 4 0 4 0 z 0
0.00000 7H/12 0.0 7H/12 0.0 7H/12 -2.5 7H/12 -2.5
0.00450 5H/12 -0.85 5H/12 -0.85 7H/12 -3.75 7H/12 -3.75
0.020000 H/12 -3.75 H/12 -3.75 5H/12 0.85 5H/12 0.85
0.03550 H/12 -8.35 H/12 -8.35 5H/12 0.85 5H/12 0.85
0.04900 7H/12 -18.75 7H/12 -18.75 5H/12 0.85 5H/12 0.85
0.08000 H/12 89.15 H/12 89.15 5H/12 0.85 5H/12 0.85
0.11100 H/12 89.15 H/12 89.15 11H/12 | 3.75 11H/12 | 3.75
[(£30),,], ((£45),,],
Linear Endochronic Linear Endochronic
Theory Theory Theory Theory
D/A z 0 z 0 Z 0 z ]
0.00000 7TH/12 -5.0 7H/12 -5.0 5H/12 17.5 SH/12 17.5
0.00450 7H/12 -3.75 7H/12 -3.75 5H/12 15.85 5H/12 15.85
0.020000 5H/12 3.75 5H/12 3.75 5H/12 14.15 5H/12 8.35
0.03550 5H/12 0.85 5H/12 0.85 5H/12 8.35 5H/12 3.75
0.04900 SH/12 0.85 5H/12 0.85 5H/12 3.75 5H/12 3.75
0.08000 5H/12 3.75 5H/12 3.75 5H/12 3.75 5H/12 3.75
0.11100 41H/12 | -0.85 11H/12 | -0.85 11H/12 | -3.75 11H/12 | -3.75
Failure C g 182




5.4.4 The Effect Of W/D On Failure

Thus far, this chapter has only examined failure in those laminates with w/d ratios of 10.
However, [( + 10),,], and [( + 20),,], laminates with 1/2” holes and w/d ratios of § were also
tested '. This section examines the effect this reduction in w/d has on both the experimental

and predicted fracture stress, o, and strain, eyt

If a hole in a plate caused no stress concentration, the reduction in strength due to a decrease
in the ratio w/d would simply be equal to the reduction in cross-sectional area. However, in
this study, the angle-ply laminates have in-plane and out-of-plane stress concentrations at
both the hole edge and at the edge of the laminate. For the anisotropic plates of this study,
the stress concentrations at the hole edge are dependent on the hole size as well. With this
in mind, it is not surprising that the reduction in strength does not follow the reduction in
cross-sectional area. Comparing the laminates with w/d ratios of 10 to those with w/d ratios
of §, there is only a 11.1% reduction in cross-sectional area. However, as Table 15 shows,
experiments reveal a reduction in strength of approximately 18.5% and a reduction in ultimate
failure strain of approximately 20% for both laminates. The finite element analyses do not
predict the same strength reduction as experiment. Both linear theory and endochronic the-
ory analysis predict approximately an 11% reduction in strength and ultimate failure strain for
the [( £ 10),,], laminates. For the [(£ 20),, ], laminates, linear elastic analysis predicts ap-
proximately a 9% reduction in strength and ultimate failure strain while the endochronic the-
ory predicts approximately a 10% reduction. Therefore, the finite element results tend to
follow the reduction in cross-sectional area of approximately 11%. Because the finite element
results are extremely conservative in predicting the fracture load, it may not be realistic to

expect them to agree with the experimental strength reduction.
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Table 15. The Effect of w/d on Notched Laminate Failure

[( £ 10),], oy (ksi) ey"(%) Z 6
Experiment |w/d = 10 -76.255 -0.44485 - 0.0
(Average)

w/id =5 -62.020 -0.35170 - 0.0
Linear w/d = 10 -10.696 -0.05960 7H/12 0.0
Elastic

wid =5 -9.568 -0.05320 7H/12 0.0
Endochronic | w/d = 10 -10.640 -0.05920 7H/12 0.0
Theory

w/id =5 -8.441 -0.05240 7H/12 0.0

[( £ 20),], oy (ksi) ey'"(%) Z 6
Experiment {w/d = 10 -45.010 -0.35495 - 0.0
(Average)

w/d = 5 -36.675 -0.28365 - 0.0
Linear w/d = 10 -7.956 -0.06050 7H/12 -2.5
Elastic

w/id =5 -7.226 -0.05490 7H/12 -2.5
Endochronic { w/d = 10 -7.969 -0.06060 7H/12 2.5
Theory

w/d =5 -7.190 -0.05460 7H/12 25
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5.5 Summary

Failure predictions for the unnotched angle-ply laminates were very good whereas failure
predictions for the notched laminates were very conservative. The predicted failure response
of unnotched laminates correlated quite well with experiment using a shear strength of 9.4 ksi.
However, a shear strength of 14 ksi vielded even better correlation for all laminates except the
[( £ 20),,], laminate whose failure prediction was non-conservative with the shear strength
of 9.4 ksi. The endochronic theory predicted oyt stresses almost identical to those of linear
analysis. However, the endochronic theory predicted ey strains more accurately than linear

analysis, especially for the [( + 45),,], laminate which exhibits the most ductility.

Using the tensor polynomial at the hole edge to predict the fracture load of notched laminates
gave extremely conservative results. One reason for this is likely due to local failure in the
region around the hole before ultimate failure occurs. Another is that the predicted stresses
around the hole are too high due to the finite element model idealization of discrete ply

interfaces.

The tensor polynomial predicted the correct location and mode of failure initiation for the
notched faminates. However, changing the shear strength from 9.4 ksi to 14 ksi showed a
difference in the predicted location of failure for some of the laminates. Almost all failures
were predicted to be caused by t4; Or 1,, shear stresses or both of them combined. A shear

failure mode agrees well with the observed failure mode of the test specimens.

Endochronic theory analysis gives a stress state nearly identical to that of linear analysis, for
a given loading, in both the unnotched and notched laminates. Therefore, both analyses
predicted oy stresses to be nearly the same for all notched laminates. Unlike the unnotched

laminates, the linear theory and endochronic theory analyses predicted nearly identical eyt
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values as well, the reason being that none of the laminates were deformed significantly into

their softening regions before failure was predicted.

In conclusion, the endochronic theory failure analysis of notched laminates correlated with
experiment only slightly better than the linear analysis due to the limits of the point-wise fail-
ure criterion and the finite element model that were used. Chapter 4 showed nonlinear ma-
terial behavior to be an important factor in analyzing notched angle-ply laminates. Therefore,
without the limitations imposed by the point-wise failure criterion and the discrete ply interface
finite element model, the endochronic theory would likely predict significantly more accurate

failure stresses, oy", and failure strains, eyt
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6.0 Conclusions

This study has analyzed the loading response and failure of unnotched and notched angle-ply
laminates subjected to uniaxial compression. The anaiysis was performed using the three-
dimensional material nonlinear finite element program AMNISAP, which utilizes the
endochronic theory as a constitutive relationship. Analytical results were compared to ex-
periment and, where appropriate, results from the endochronic theory were compared to re-
suilts from linear theory. The conclusions of this study from the previous chapters are

presented below.

6.1 The Endochronic Theory

The endochronic theory is a macroscopic constitutive theory that was used in this study to
model AS4/3502 graphite-epoxy. The theory, originally developed by Valanis ' 12 and modified
to model transversly isotropic materials by Pindera and Herakovich " #, js based on irre-

versible thermodynamics and uses the concept of internal variables. The transversely
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isotropic theory was extended to three-dimensions in this study to facilitate the analysis of

laminates with cutouts.

Like the 2-D equations, the 3-D endochronic equations are based on two fundamental laws of

thermodynamics: 1) Conservation of Energy, and 2) The Dissipation (Clausius-Duhem) Ine-

quality. The 3-D equations contain 18 constants (15 independent) which are unique to

AS4/3502 graphite-epoxy. These constants can be separated into reversible constants and

irreversible constants. The determination of the constants is described as follows:

1.

The six reversible constants (five independent) were used in the expression for reversible
strain and consist of the compliance matrix A;. Because the compliance matrix models
the linear response of the material, it was determined from the initial response of various
unidirectional ilamina tests. Straight lines were least squares fit through the initial data

of the lamina tests and the slopes of these lines were used to determine the A

Twelve irreversible constants (10 independent) were used in the expression for irrevers-
ible strain; they are the S; matrix and the n,, By, , n,, B3, ng, and BY, parameters. These
constants, which model the nonlinear response of the material, were also determined
from various unidirectional lamina tests. The logarithm of a strain component was plotted
against the logarithm of its corresponding stress component and a straight line was least
squares fit through this data. The slope and strain axis intercept of these lines were used
to determine the constants. Sixteen sets of the irreversible constants were determined;
however, only five sets were considered in the analysis -- those whose S; matrix was
positive-definite. These five sets were used to model off-axis lamina response and
unnotched angle-ply laminate response. The parameter set which best represented the

experimental lamina and laminate tests was chosen for use in this study.
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6.2 The Finite Element Program AMNISAP

The three-dimensional material nonlinear finite element program AMNISAP utilizes the
endochronic constitutive theory and constant stress and constant strain solution algorithms
to solve the nonlinear system of equations. It also utilizes a symmetry relationship called in-

version symmetry. In this study, the prog

super computer. The important features of AMNISAP are outlined below.

1. The inversion symmetry utilized in AMNISAP consists of rotating a plate through 180°
about the axis of symmetry. Defining an x; coordinate system (i= 1,2,3), with the x; coor-
dinate the axis of symmetry, a symmetry transformation changes the coordinates
X, (@ = 1,2) of each material point of the plate into —x,. The inversion symmetry analysis
in this study resulted in considerable storage and run time savings over conventional half

plate analysis.

2. The vectorizing utility VAST was used to vectorize the three subroutines COLSOL, ELKAY,
and STRESS in AMNISAP because they were found to use the majority of CPU time.
Based on a 20 element mesh, a total speed factor of 12 was realized by using vectorized
inversion symmetry analysis over non-vectorized half plate analysis. Considerably higher
speed factors were likely realized for the analysis of notched angle-ply laminates in this

study.

3. The constant stress and constant strain solution algorithms used in AMNISAP are based
on the concept of initial strain and are classified as step-iterative methods. They each
utilize a psuedo load vector which contains all the nonlinear terms of the equations.
Therefore, the global stiffness matrix is formed only once and remains constant through-

out the analysis. Both algorithms were included in AMNISAP because one of them might
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be better suited for a given problem. The user can choose the algorithm which best fits

the problem at hand.

6.3 Laminate Response

The response of unnotched and notched angle-ply laminates subjected to uniaxial
compressive loading was analyzed and compared to experiment. All theoretical results were

obtained using AMNISAP. The highlights of this analysis are outlined below.

6.3.1 Unnotched Laminates

1. The unnotched angle-ply laminates’ axial and transverse response agreed very well with
experiment. The agreement of theory and experiment for the [ + 45], laminate was es-
pecially good, considering this laminate’s substantial softening response. Although the
theoretical/experimental correlation for transverse response was good, it was not quite
as good as that for axial response in the [ + 10],, [ + 20],, and [ £ 30], laminates. A
possible cause for the less accurate transverse response is that the endochronic
equations used cannot accurately model mixed stress states (o, and o, are of opposite

sign in the [ £ 10],, [ + 20],, and [ & 30], laminates).
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6.3.2 Notched Laminates

1. The endochronic equations were found to predict unloading of various stress components
in the analysis of the notched laminates. At a critical load level, this unloading phenom-
enon prevented higher loading by causing the solution to diverge. A condition referred
to in this study as the zero-slope condition was implemented in AMNISAP to allow loading
past the critical load level. The zero-slope condition forces an unloading stress compo-

nent’s stress-strain modulus to zero for the remainder of the loading history.

2. Theoretical/experimental correlation of the notched angle-ply laminates’ far field axial
response was excellent. Due to the unloading phenomenon mentioned above, the

[( = 10),,], and [( % 20),,], laminates did not reach the experimentally observed failure

load.

3. The theoretically predicted axial strain response near the hole agreed well with exper-
iment. However, the predicted response was dependent on the distance from the hole,
especially in the [( % 10),,], and [( & 20),,], laminates. The D/A value {(nondimensional
distance from the hole) at which the [( £ 10),,], and [( = 20),,], laminates best agreed
with experiment was different from the D/A value for the [( + 30),,], and [( £ 45),,],
laminates. However, the [( £ 10),,], and [( + 20),,], laminates had 1/4” holes whereas
the [( £ 30),,], and [( + 45),,], laminates had 1/2” holes, which may have influenced the

placement of the strain gage on the test specimens.

4. The predicted oy, 14, and o, stress concentration profiles were examined along 6 = 0°
from the hole edge to a distance D/A=0.6. The endochronic theory profiles differed sig-
nificantly from the linear theory profiles, especially for the out-of-plane shear stress Tor -

The important features of the stress concentration profiles are given below:
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The [( + 10),, ], laminate exhibited the highest o, stress concentration value and the
[( + 45),.], laminate the lowest value. At gauss planes near an interface (Z=H/12
and Z=>5H/12), the endochronic theory predicted a lower peak ¢, stress concen-
tration in the [( % 10),,], and [( = 45),,], laminates and a higher peak o, stress
concentration in the [( £ 20),,], and [(  30),,], laminates. Both analyses predicted
the peak o, stress concentration to occur at the hole edge for the [( £ 10),,], lami-

nate and at points a small distance away from the hole edge for the other laminates.

The [( + 30),,]; laminate exhibited the highest 1,, stress concentration and the
[( £ 10),,], laminate the lowest. In all laminates, linear theory predicted significantly
higher peak 1,, stress concentrations than the endochronic theory. The peak 1,

stress concentration occured at the hole edge.

The o, concentration profiles oscillate between positive and negative values, al-
though the magnitudes are very small. The endochronic theory profiles are very
similar to the linear theory profiles except near the hole edge where the endochronic

theory predicts much larger o, stress concentrations than linear theory.

5. The predicted stress profiles in material principle coordinates were examined at the hole

edge, for —90° < 6 < 90°. The highlights of these profiles are listed below:

The linear theory and endochronic theory o, stress profiles are very similar for all
laminates except the [( £+ 45),,], laminate where the endochronic theory predicts a
40% higher peak o, stress concentration. The endochronic theory predicts higher
peak o, stress concentrations than the linear theory for the [( % 10),,],, and

[( + 45),,]), laminates and lower than linear theory concentrations for the

[( £ 20),,]; and [( £ 30),,], laminates.
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¢ The linear theory and endochronic theory o, stress profiles are similar in the
[( £ 10),.), and [( £ 20),,], laminates and relatively dissimilar in the [( % 30),,], and
[( = 45),,], laminates. The endochronic theory o, stress profiles are much more

jagged than the linear theory profiles.

¢ The linear theory and endochronic theory g, (0,) stress profiles differ significantly for
all the laminates except the [( + 10),,], laminate. The endochronic theory o, stress
profiles exhibit radical jumps and show stress magnitudes much higher than the lin-

ear theory profiles.

¢ The linear theory and endochronic theory interlaminar shear stress o, (t,,) profiles
are similar for all the laminates except the [( &+ 20),,], laminate where the profiles

show a significant difference in magnitude.

¢ The linear theory and endochronic theory interlaminar shear stress oy (1,;) profiles
agree reasonably well for all laminates except the [( + 20);,], laminate. The
endochronic theory peak o stress concentrations are significantly lower than the

linear theory concentrations in all iaminates except the [( + 20),,], laminate.

e The linear theory and endechronic theory shear stress o, (1,,) profiles are similar for
all the laminates. The endochronic theory 6, stress profiles are much more jagged
than the smooth linear theory profiles. In all of the laminates, the peak o4 stress

concentration is lowest for endochronic theory analysis.

6. Cylindrical coordinate o, and 1, stress profiles were examined at the hole edge for

—80° < § < 90°. The highlights of the o, and 1,, stress profiles are listed below.

® The o, stress profiles are very similar to the o, stress profiles and show the same

trends.
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e The 1,, stress profiles show the maximum 1, stress to occur at 0= 0° for all laminates.

The linear theory and endochronic theory 1,, stress profiles are similar in shape, but
differ in peak magnitude. In all laminates, the endochronic theory predicted lower

peak T,, stress concentrations than the linear theory.

6.4 Failure

A failure analysis of the unnotched and notched angle-ply laminates was performed using the

tensor polynomial failure criterion. The tensor polynomial was used to predict the fracture

load and, for the notched laminates, the location and mode of failure. Failure away from the

hole edge was examined by applying the tensor polynomial at radii greater than the hole ra-

dius for —90° < 6 < 90°. Finally, the effect of the ratio w/d on failure was investigated for the

[( £ 10),,], and [( + 20),,], laminates. The important feature of the failure analysis are out-

lined below.

1.

Theoretical fracture load predictions agreed very well with experiment for all of the
unnotched laminates except the [ £ 207, laminate. For the [ £ 20], laminate, theory
gave non-conservative failure predictions. An in-plane shear strength value of 14 ksi gave
better fracture load predictions than a shear strength vélue of 9.4 ksi. The endochronic
theory predicted oi* stresses nearly the same as linear theory, but predicted ey" strains

more accurately than linear theory.

Fracture load predictions for the notched laminates were very conservative. A shear
strength value of 14 ksi gave better fracture load predictions than a shear strength value
of 9.4 ksi; however, the fracture load predictions were still very conservative. The

endochronic theory and linear theory ou* stresses were very similar. However, the
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endochronic theory &* strains did not correlate with experiment significantly better than
the linear theory &y strains because the conservative fracture loads did not allow the

laminates to be deformed significantly into their softening regions.

3. The material nonlinear endochronic theory fracture predictions for the notched laminates
did not correlate with experiment significantly better than the linear theory predictions.
Therefore, the cause of the conservative fracture loads is likely due to finite element
stresses near the hole edge that are too high and the application of the tensor polynomial
at the hole edge. Laminates often exhibit local failure (micro-cracking) near notches be-

fore fracture; therefore, the tensor polynomial may actually be predicting local failure and

not fracture.

4. Application of the tensor polynomial at the hole edge gave very accurate predictions of
the locations and modes of failure. When a shear strength of 9.4 ksi was used, the
endochronic theory gave failure modes and locations identical to those of the linear the-
ory for all laminates. However, when a shear strength of 14 ksi was used, the
endochronic theory and linear theory predicted different failure locations and different
tensor polynomial terms for the [( + 30),,], and [( * 45),,], laminates. In the
[( £+ 30),,], laminate, the endochronic theory predicted a different failure mode than the

linear theory using a shear strength of 14 ksi.

5. Application of the tensor polynomial at various radii (or distances from the hole edge) for
—90° < 0 < 90° shows the lowest fracture loads to occur at the hole edge. The profiles
of far field oy" stress versus the distance D/A do not converge at any D/A value; therefore,
a characteristic distance does not seem to exist. As D/A increases, the predicted failure
locations change in both 6 and Z dimensions. The endochronic theory and linear theory
predict identical failure locations as a function of D/A for all laminates except the

[( = 45),,], 1aminate.
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6. [( =+ 10),,], and [( £ 20),,], laminates with w/d ratios of 10 and 5 were tested ' and ana-
lyzed. For a decrease in w/d from 10 to 5, experiments revealed a reduction in strength
of approximately 18.5% and a reduction in ultimate failure strain of approximately 20%
for both laminates. Both linear theory and endochronic theory gave reductions in strength
and ultimate failure strain approximately equal to the 11.1% reduction in cross-sectional

area.
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For a given test, a straight line representing a "best fit” through the data is required. The data
reduction in Chapter 2 uses a least squares fit to best approximate this straight line. A
straight line is represented by the equation y = mx + b where m is the slope and b is the
y-intercept on a cartesian coordinate system. If x is designated to be the independent vari-
able, then for a given x data point, there exists both a y data point (called y-observed or y,,)
and a y value corresponding to the equationy = mx + b The difference between these values

is represented by the equationd = y,,, — mx + b,

it is desired to minimize this difference over the entire range of data points, but since d may
be a positive or negative quantity, the difference d cannot simply be summed over each point.
The least squares method sums the square of the difference (function f below) over each point.
This may be represented in functional form as

n
f(mb) = ¥ d? (A1)

i=1

where

di=y, —mx —b

In order to minimize this function of the two variables m and b, the derivative of the function
with respect to each variable is set equal to zero and the resulting two equations are solved

simultaneously.

—— = e = A.
om db (A-2)
7 SR L YN - =
am i§12(yl mx; — b)x, = 0
of _ no _ o _
3b z, 2y, —mx;—b)y=0
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Equations (A.2) may be expanded to yield:

n n
mIx +bn= Yy,
i=1 i=1
n 2 n n
mlf, xi + b'21xI = ‘21x,y,
= i= =

1

In matrix form, equations (A.3) exhibit the form:

n n
T X E
i=1 =1
n n
i=1 i=1

Equations (A.4) yield a "best fit” value for the slope m and the y-intercept b.
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The following Tables are referenced in Chapter 2 for determining the endochronic constants.

They contain slopes and y-axis intercepts from various lamina tests.

Table B.1. Tables for Determining A,4, vq,, A2z, and Ay,

(a) A, Determined from 0° Uniaxial Compression Tests

Test # Slope m (psi) Y-intercept (psi) Ay,
1 19,509,667.9 13.17 5.12566E-08
2 19,500,513.2 -48.80 5.12807E-08
Average | 19,505,090.5 -17.82 5.12687E-08
(b) v,2 Determined from 0° Uniaxial Compression Tests
Test # Slope m (psi) Y-intercept (psi) Va2
1 -0.3500225 -6.81225E-06 0.3500225
2 -0.3159658 -1.69530E-05 0.3159658
Average | -0.3329942 -1.18856E-05 0.3329942
{c) A.. Determined from 90° Uniaxial Tests
Test # Slope m (psi) Y-intercept (psi) A::
1 1,525,254.8 150.04 6.55628E-07
2 1,527,561.5 -55.12 6.54638E-07
Average | 1,526,408.2 47.48 6.55133E-07
(d) A, Determined from 2-3 Plane losipescu Tests
Test # Siope m (psi) Y-intercept (psi) Ay
1 472,208.9 -31.94 2.11771E-06
2 445,017.1 51.94 2.24710E-06
Average | 458,613.0 10.0 2.18049E-06
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Table B.2. Tables for Determining Aee, B4, Ny, Nz, and B,

(a) Aee Determined from 1-2 Plane losipescu Tests and Off-Axis Tests

losipescu Tests Slope m (psi) Y-intercept (psi) Age
1 812,268.9 1.46 1.23112E-06
2 903,552.3 0.04 1.10674E-06
Off-Axis Slope m (psi) Y-intercept (psi) Acs
10 839,663.2 0.00 1.19095E-06
15 887,303.5 0.00 1.12701E-06
30 789,924.2 0.00 1.26594E-06
45 836,014.9 -0.05 1.19615E-06
Average 844,787.2 0.48 1.18373E-06
(b) B,, and n, Determined from 0° Uniaxial Compression Tests
Test# Slope m (psi) | Y-intercept (psi) n, B
1 2.403743 -35.79 2.403743 2.85762E-16
2 2.492074 -36.89 2.492074 9.55283E-17
Average | 2.447909 -36.34 2.447909 1.90645E-16

(c) n. Determined from 90° Uniaxial Compression Tests

Test # Slope m (psi) Y-intercept (psi) n;
1 2.84790 -35.62 1.8479
2 4.07145 -48.00 3.0714
Average | 3.459675 -41.81 2.4597

(d) B®,, Calculated Using n, from 90° Uniaxial Tests

Test # Y-intercept B, x SR
1 -41.9532 2.08449E-18
2 -41.7110 2.65574E-18

Average -41.8321 2 37010E-18
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Table B.3. Tables for Determining ne and S,

(a) n,, Determined from 1-2 Plane losipescu Tests and Off-Axis Tests Using the Average

Value of A

losipescu Tests Slope k¢ In Ce Ngy = ke =1
1 3.84135 -41.29 2.84135

2 4.04839 -43.18 3.04939
Off-Axis Tests Slope ke In Cs Nga = Ke -1
10 2.99530 -33.08 1.99530

15 2.96310 -32.33 1.96310

30 3.73866 -39.83 2.73866

45 3.68246 -38.59 2.68246
Average 3.54504 -31.62 2.54504

(b) ng, Determined from 1-2 Plane losipescu Tests and Off-Axis Tests Using Individual

Values of Age

losipescu Tests Slope ke In Ce ng = Ke = 1
1 3.84140 -41.14 2.84140

2 4.18540 -44.69 3.18540
Off-Axis Tests Slope k¢ InCe N = Ke =1
10 2.99770 -33.08 1.99770

15 2.07490 -32.58 1.87480

30 3.61290 -38.47 2.61290

45 3.58800 -37.77 2.58900
Average 3.53355 -37.96 2.53355

(c) See Calculated Using ng, for 1-2 Plane losipescu Tests

Test # Y-intercept Ses
1 -38.60 1.81042E-13
2 -38.40 2.12236E-13
Average -38.50 1.96639E-13
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Consider the foilowing §;; matrix:

Sy9. 81282 0 0 0 W
Si2 822 83 0 0 0
S12 8238 0 0 O :
(B.1)
0 0 0 S 0 0
0 0 0 0 Sg O
0 0 0 0 0 Sg
To be positive definite, the above matrix must meet the following criteria:
Syy > 0 (B.2)
Sy S12
> 0 (B.3)
Sy2 S22
Sq1 S12 Sp2
S12 S22 S | > O (B.4)
S12 Sa3 Sa

Expanding equations (B.2) through (B.4) gives the following conditions:

1. 8,>0

2. 311822 - S%z > 0

3. Su(S% — S%s) + 28%(S; — S > 0

Appendix C. Criterion For Positive Definiteness 209




Appendix D. Finite Element Implementation of

Inversion Symmetry

Appendix D. Finite Element Implementation of Inversion Symmetry 210




A finite element model is a set of N equations with N unknowns. The inversion symmetry
conditions introduce M new equations, reducing the number of equations and unknowns to N
- M. Applying the inversion symmetry condition to an anisotropic plate in the modeling stage
reduces the geometry of the model from full to half. Any line passing through the center of
symmetry which splits the plate into two half sections may be used. The symmetry line cho-

sen for modeling the plate with a central hole of this study is the y-axis (Figure D.1).

A simpie exampie is used here t0 show how a fuii finite eiement model is reduced to a half
model. Consider an anisotropic plate under compression. A simple four element grid with 4
node elements represents the finite element model as shown in Figure D.1. For the sake of

simplicity, assume that each node has only one degree of freedom, that in the y-direction.

The global set of equations is written

Ky Kig 0 Kyg Keis 0 O O O v, F,
Kio Koo Kyz Kyq Kys Kg 0 0 O Va Fa
0 Ky3 Kagg 0 Kg5 Kig O O O V3 Fa
Kia Kog 0 Ky Kgs 0 Kyz Kgg O Vs 0
Kis Kas Kas Kys Kss Ksg Kgz Ksg Koo Vg > = 0 (D.1)
0 Ky Kyg 0 Ksg Kgg 0 Kgg Keg Ve 0
0 0 0 Ky Ksg 0 K7 Krg O v, —Fy
0 0 0 Ky Ksg Keg Krg Kgg Kgg Vg —F
0 0 0 O KsgKgo 0 Kgo Keg | \Vo ~F,

where V, represent the unknown nodal displacements.

Applying the inversion symmetry relationship to the displacements, using the Y-axis as the

line of symmetry,
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Figure D.1. Four Element Finite Element Grid with 4 Node Elements for Anisotropic Plate Under
Compression Loading
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Vo= —Vg (D.2)
V1 - _VQ
Va = _V2

Substituting equations (D.2) into (D.1) gives the following set of equations.

K11 K12 0 K14 K15 0 0 0 0 —Vg F1
K12 Koo Kyg Kog Kos Kg 0 0 0 Va F2
0 Ky Kz O Kas Ksg O 0 0 Vj Fa
Kig Koy 0 Ky Kig 0 Kz Kgg O Vs 0
Kis Kos Kas K45 Kss Ksg Ksy Ksg Ksg Vs >= 0 (D.3)
0 Ky Kgg 0 Ksg Keg O Kgg Kgg Ve 0
0 0 0 K47 K57 0 K77 K75 0 - V3 - F3
0 0 0 K4 Ksg Keg Krg Kgg Kgg -V, —F
0 0 0 0 ng ng 0 Kag Kgg Vg - F1

Equation set (D.3) has only five unknown displacements -- four of the unknown displacements

were eliminated using inversion symmetry. Rearranging equation set (D.3) yields:
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(D.4)

Ky —Kip 0 Ky —Ks O O 0 0O A ~F,
—Kia Ky Ky —Kyy  Kys Ky O 0 Y Va Fa
0 Koz Kag 0] Kas Kag 0 0 0] V3 Fs
Kig =Koy 0 Ky —Kgs 0 Ky Kyg O Ve 0
—Kis  Kgs Kas —Kgs  Kss  Ksg —Kgz —Ksg  Ksg Vs > = 0
0 Ky Kse 0 Ksg Keg 0 —Kgg Keg Vs 0
0 0 0 Ky —Kgg 0 Ky Ky O Vs Fa
0 0 0 Ky —Kgg —Kgg Kzg  Kgg —Kgg Vo Fa
0 0 0 0 Ksg Kg 0 —Kgg Koo Vo —F,
i ]

(K22 + Kgp) (Kog + K7g) (Kys — Kgg) (Ko + Kep) — (Kpy + Keg) ( —Kqp + _Kus-) (Vz 2F,

(Kayz + Kyg) (Kaz + K77) (Kas — Ksp) (Ka7 + Kgg) 0 V3! 2F3

(Kas + Ksa) (Kz5 — Ke7) Kss {Kss — Kqs) (Ksg — Kqs) Vs = ¢ 0 »(D35)
(Kgg + Kog) — (Kog + Kga)  (Kgz + Kag) (Ksg — Kys) (Keq + Kgg) (Kiq + Kgg) Vg 0
| ( —Kqz + —Kgg) o {Ksg — Kys) (Kig + Keg) (Kgq + Kgg) ] Vs ik

Because the stiffness terms are inversion symmetric as well, equation set (D.5) may be sim-

plified even further. Note that

Kgg = Koz  Kyg = Kyg

Ksg = Kog  Kog = Kgg

Kyg = Kgg K77 = Kga
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Ks7 = Kas  Kaz = Kgg (D.5)

Ksg = Kps  Ksg

Kas = Kgg  Kis = Ksg

Kis = Keg  Kyq = Kgg

Therefore,
- -
2Ky, 2Kys 0 2(Kyg — Kgg) —2Kgg V, 2F,
2K 2Kz O 2Kqg 0 Vj, 2F4
0 0 Kss 0 0 Vg ) = 0 (D.7)
2(Kpg — Kgg) 2Kqg O 2Kgg 2K Vg 0
—2Kgg 0 O 2Kgg 2Kgg Vg —2F,

Equation set (D.7) include stifiness and displacement terms from elements 1 and 2 only. Of

course, a 2 can be factored from equations 1,2,4, and 5 in equation set (D.7).

This simple example shows how a full plate finite element model may be reduced to that of
a half plate model (Figure D.2). In the above example, the line of symmetry was taken as the
Y-axis. Alternatively, the X-axis, a line through node points 3, 5, and 7, or a line through points

1, 5, and 9 could have been used as the line of symmetry.

Of course, in modeling the full plate with a half plate mesh, the finite element program must

be modified internally and the input data modified appropriately. This is discussed next.
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Figure D.2. Two Element Inversion Symmetry Finite Element Grid with 4 Node Elements for
Anisotropic Plate Under Compression Loading
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D.1 Finite Element Development

Independent and dependent nodes can be defined for the half plate mesh shown in Figure D.2.
Those nodes associated with the independent degrees of freedom are called independent
nodes. All other nodes are dependent nodes. In the plate in Figure D.2, node 8 {or node 2)
is the only dependent node because its displacement is dependent upon the node 2 dis-

placement (or the node 2 displacement is dependent upon the node 8 displacement).

In order to implement the inversion symmetry condition, the finite element program must
know which nodes are independent and which nodes are dependent. This is done in the input
data. Each node is labeled with an integer valued flag variable -- either a 0, 1, or -1. The
variable 0 indicates that this node is independent. The variable 1 indicates that the node is
independent, but has a dependent node which corresponds to it. The variable -1 indicates the
node is dependent and corresponds to one of the nodes marked with a 1. The dependent
nodes are matched to their appropriate independent nodes by their global coordinate re-

lationship.

The program assigns each node to a global equation number. Dependent nodes are assigned
to the same global equation number as their corresponding independent nodes. In the as-
sembly procedure, the stiffness terms of the dependent nodes are added to the stiffness terms
of the independent nodes. However, before the assembly of the global stiffness matrix, the

elemental stiffness terms are modified in those elements which contain dependent nodes.

For elements with dependent nodes, the stiffness and load matrices are modified by transf-

ormations of the form
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(K1 = Mk (D.8)

{P} = M1I'{P}

where [K] and {P} are the element stiffness and load matrices and [I'] is the transformation

matrix.

For element 2 in the mesh of Figure D.2, the elemental equations would appear as

2 2 L2 2
Kir Kiz Kiz Kis Vs 0
2,2 L2 2
Kiz Koy Koz K Ve 0 0.0
2 2 2 2 - :
Kis Kz Kiz Kig Vs —F
2 L2 L2 2
Kis Kas K3g Kiy Vg —F4
or
[k2]vy = {F%}
The transformation matrix would look like
(1 0 o0 o]
0 1 0 0
r = (D.10)
0O 0 -1 O
0 0 o 1

After the transformation, the transformed stiffness and load matrices would look like
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[K]

(D.11)
( 0\
_ o |
=< 5
) F2|
—F
\ "/
For element 1, the elemental equations would appear as:
o 1 1]
Ki1 Kiz Kiz Kig Va Fa
1 1 1 1
Kiz Ky Kz Kog V3 F3
11 - (D.12)
Kiz Koz Kaz Kag Vs 0
1
Kia Kog Koy Kyg Ve \0

or

kvy = (¢

Assemblying the element stiffness and force matrices to form the global stiffness and force

matrices yields
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(K + K Kl (Ko=) (K — kB —1B, | (Ve ([ F,

Ki2 K22 K23 K24 0 Vs Fa
(Kia = K}o) Kl (K3 + Kip) (K3 + Kip) K {Vs > = { 0} (DA3)
(Kis = K3o) K3 (K3s + Kip) (Kig + K3,) K3, Vs 0

-K3, 0 K3, K34 K2, (Vo) =F4)

Transforming the elemental stiffness terms into global stiffness terms yields

K22 Kas 0 (Kys — Kgg) —Kgg v, ) Fa

K2a Kaz Kas Kag Y Va Fa

0 Kas Kss Ksg Kse < Vs » = {0 > (D.14)
(Kog — Kgg) Kag Ksg Kes Keg Ve 0

“Keg 0 Ksg Keo Koo ] Ve ) —F4

These global equations are identical to those of equation set (D.7) in the previous section.
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To compare scalar operations to vector operations, consider the following subroutine.

SUBROUTINE XT(N)
COMMON  A(100),B(100),C(100),D(100)
COMMON  X(100),Y(100)

DO 101=1.2
X() = A s(l) + C()*D(I-1)
Y(1) = ABS(X(I})
10 CONTINUE

RETURN
END

The sequence of scalar operations in this loop are as follows:

D(1)*C(2) Register,
A(2)*B(2) Register,
Register, + Register; ---=------ Registery
Register, X(2)
ABS(Register,) Y(2)
D(2)*C(3) Register,
A(3)*B(3) Register,
Register, + Register; -------—-- Registery,
Registery X(3)
ABS(Register,) Y(3)
D(N-1)*C(N) --------—--mome—- Register,
A(N)*B(N) ------memmmemmmmaea Register,
Register, + Register, ---------- Registery
Registery X(N)
ABS(Register,) Y(N)

The Cyber 205 vector operation sequence is shown below:

D YR) RO ) [ ——— TEMP,(1)
DIPI O I — TEMP,(2)
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L]

D(N-1)*"C(N) —mmemmemen TEMP(N-1)

PXCI =17 R ——— TEMP,(1)
PYE) =1 —— V1Y
A(N)*B(N) ==rmmeemeee TEMP,{N-1)

TEMP,(1) + TEMP,(1) —-mme X(2)
TEMP,(2) + TEMP,(2) ~rmeeam X(3)

"

TEMP(N-1) + TEMP,(N-1) - X(N)

ABS(X(2)) Y(2)
ABS(X(3)) Y(3)
ABS(X(N)) Y(N)

As the exampie above shows, the vector processor performs its operations on vectors (or
arrays) such as D(N-1)*C(N). It also may perform the above operations at the same time, re-

ferred to as parallel processing. Obviously, this processing is much speedier than the scalar

processing.

However, not all do-loops can be vectorized. An array which is a function of previous values

of itself may not be vectorized, as shown in the example below.

SUBROUTINE XT(N)
COMMON  A(100),B(100),C(100),D(100)
COMMON  X(100),Y(100)

DO 10 1=2,N
X(h = A)B() + C()*X(I-1)
Y(l) = ABS(X(1)

10 CONTINUE

RETURN
END
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The above operation may only be computed one step at a time because the value of X(l) de-
pends upon X(I-1). Vector processing would give erroneous results in this case. Cyber 205
vector processing restrictions are: (1) Arguments must be determinable prior to the operation,
(2) Operands must be addressable under certain conventions, and (3) Array elements must

be contiguous.
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